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Abstract

A neural fuzzy system can learn an agent profile of a user when it samples user ques-

tion-answer data. A fuzzy system uses if-then rules to store and compress the agent’s

knowledge of the user’s likes and dislikes. A neural system uses training data to form

and tune the rules. The profile is a preference map or a bumpy utility surface defined

over the space of search objects. Rules define fuzzy patches that cover the surface

bumps as learning unfolds and as the fuzzy agent system gives a finer approximation of

the profile. The agent system searches for preferred objects with the learned profile

and with a new fuzzy measure of similarity. The appendix derives the supervised learn-

ing law that tunes this matching measure with fresh sample data. We test the fuzzy-

agent profile system on object spaces of flowers and sunsets and test the fuzzy agent

matching system on an object space of sunset images. Rule explosion and data acquisi-

tion impose fundamental limits on the system designs.

1 Smart Agents: Profile Learning and Object Matching

How can we teach an agent what we like and dislike? How can an agent
search new databases on our behalf? These are core questions for both human
agents and intelligent software agents. We explore these questions with the
joint tools of fuzzy rule-based systems and neural learning. These tools exploit
the filter and set-theoretic structure of agent search.

An intelligent agent can act as a smart database filter (Grosky, 1994; Maes,
1994). The agent can search a database or a space of objects on behalf of its
user. The agent can find and retrieve objects that the user likes. Or the agent can
find and then ignore or delete objects that the user does not like. Or it can
perform some mix of both. The agent acts as a filter because it maps a set
of objects to one or more of its subsets. The agent is ‘‘smart’’ (Brooks, 1995;
Maes, 1995a; Steels, 1995) to the degree that it can quickly and accurately
learn the user’s tastes or object profile and to the degree that it can use that
profile map to search for and to rank preferred objects. Figure 1 shows how an
agent can learn and store user tastes as a bumpy preference surface defined over
search objects.

Agent search depends on set structure in a still deeper way. The search system
itself may have many parts to its design and may perform many functions in
many digital venues (Colombetti & Dorigo, 1994; Yamauchi & Beer, 1994).
But at some abstract level the agent partitions the object space into two fuzzy
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or multivalued sets with blurred borders. The agent par-
titions the space into the fuzzy set of objects that it as-
sumes the users likes and into the complement fuzzy set
of objects that it assumes the user does not like. All
search objects belong to both of these fuzzy sets to some
degree. Then the agent can rank some or all of the ob-
jects in the preferred set and can pick some of the extre-
mal objects as its output set.

The agent needs a profile of its user so that it can
group objects and rank them. The agent must somehow
learn what patterns of objects the user likes or dislikes
and to what degree the user likes or dislikes them (Maes,
1995b; Rasmus, 1995). This profile is some form of the
user’s implicit preference map. The user may state part
of this map in ordinal terms: ‘‘I like these red flowers
more than I like those blue flowers. I like the large
purple flowers about the same as I like the small red-
white flowers.’’ The objects may be fuzzy patterns or
fuzzy clusters in some feature space (Krishnapuram &
Keller, 1993; Pal & Bezdek, 1995; Pal, Bezdek, &
Hathaway, 1996).

Microeconomic theory ensures that under certain
technical conditions these complete ordinal rankings
define a numerical utility function. The utility function is
unique up to a linear transformation (Debreu, 1983;
Hildenbrand & Kirman, 1976; Owen, 1995). So we can
in theory replace the ordinal claim ‘‘I like object A at
least as much as I like object B’’ with some cardinal rela-
tion u(A) $ u(B) and vice versa. The utility function
u: O = R converts the ordinal preference structure into
a numerical utility surface in an object space O of low or
high dimension (Debreu, 1983; Hildenbrand & Kir-
man, 1976; Owen, 1995). The user likes the surface’s
peak objects and dislikes its valley objects.

We use neural fuzzy systems to learn the user’s profile
or utility surface as a set of adaptive fuzzy if-then rules.
The rules compress the profile into modular units. The
rules grow the profile from a first set of sample data or
question-answer queries and change the profile’s shape
as the agent samples more preference data. The modular
structure of the rules lets the user add or delete knowl-
edge chunks or heuristics.

Figure 1. Profile learning. A neural fuzzy agent learns a user’s utility surface as the user samples a database of classic paintings. The

twelve bumps or extrema on the preference map show how much the user (or the agent that acts on the user’s behalf) likes or dislikes the

12 paintings. Here the evolving utility surface forms in the ‘‘mind’s eye’’ of a neural fuzzy agent based on nineteenth-century English

philosopher John Stuart Mill.
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These fuzzy systems are universal approximators
(Kosko, 1994) but they suffer from exponential rule
explosion in high dimension (Kosko, 1995b). Their first
set of rules give a quick but rough approximation of the
user’s profile. Each rule defines a fuzzy patch or subset
of the object space (or product object space). Mean-
square optimal rules cover the extrema or bumps of the
profile surface (Kosko, 1995b). Then other rule patches
tend to quickly fill in between these bumps as learning
unfolds. Figure 2 shows some of the flower test images
we used to form a 4-D feature space of objects. Figure 3
shows how a neural fuzzy system with 100 rules approxi-
mates a 2-D profile surface. The utility profiles grow
finer as the user states more numerical ranks for test ob-
jects or pattern clusters. Rule explosion remains the chief
limit to this approach.

We also combine neural learning and fuzzy set theory
to search for preferred objects. We cast this search prob-
lem as one of fuzzy similarity matching and define a new
measure for the task and show how supervised learning
updates this measure. The user gives the system match-
ing degrees in the unit interval for a test space of sunset

Figure 3. Fuzzy function approximation. 2-D sinc standard additive

model (SAM) function approximation with 100 fuzzy if-then rules and

supervised gradient descent learning. (a) Desired function or

approximand f. (b) SAM initial phase as a flat sheet or constant

approximator F. (c) SAM approximator F after it initializes its centroids

to the samples: cj 5 f(mj). (d) SAM approximator F after 100 epochs

of learning. (e) SAM approximator F after 6000 epochs of learning. (f)

Absolute error of the fuzzy function approximation (0 f 2 F 0).

Figure 2. Search Objects. Samples of flower images in the test database. (With permission: Hitachi Viewseum, Copyright r1995,

1996, 1997, Hitachi, America, Ltd. All rights reserved.)
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images. Supervised gradient descent tunes the measure
and defines a similarity surface over the sunset object
space. Similar objects have nearly the same utility, but
objects with the same utility need not be similar. Other
systems might combine the ‘‘smart’’ techniques of fuzzy
profile learning with fuzzy object matching to aid in the
agent search process.

2 Neural Fuzzy Function Approximation:
Patch the Bumps

This section reviews the basic structure of additive
fuzzy systems. The appendices review and develop the
more formal mathematical structure that underlies the
neural fuzzy agent systems.

A fuzzy system F: Rn = Rp stores m rules of the word
form ‘‘IF X 5 Aj THEN Y 5 Bj’’ or the patch form
Aj 3 Bj , X 3 Y 5 Rn 3 Rp. The if-part fuzzy sets Aj ,

Rn and then-part fuzzy sets Bj , Rp have set functions
aj : Rn = [0, 1] and bj : Rp = [0, 1]. The system can use
the joint set function aj or some factored form such as
aj(x) 5 aj

1(x1) · · ·aj
n(xn) or aj(x) 5

min (aj
1(x1), . . . , aj

n(xn)) or any other conjunctive form
for input vector x 5 (x1, . . . , xn) [ Rn.

An additive fuzzy system (Kosko, 1991, 1994) sums
the ‘‘fired’’ then-part sets B8j:

B(x) 5 o
j51

m

wjB 8j 5 o
j51

m

wjaj(x)Bj. (1)

Figure 4a shows the parallel fire-and-sum structure of
the standard additive model (SAM). These systems can
uniformly approximate any continuous (or bounded
measurable) function f on a compact domain (Kosko,
1994).

Figure 4b shows how three rule patches can cover part
of the graph of a scalar function f : R = R. The patch
cover shows that all fuzzy systems F : Rn = Rp suffer
from rule explosion in high dimensions. A fuzzy system F
needs on the order of kn1p21 rules to cover the graph and
thus to approximate a vector function f : Rn = Rp. Opti-
mal rules can help deal with the exponential rule explo-
sion. Lone or local mean-squared optimal rule

patches cover the extrema of the approximand f (Kosko,
1995b). They ‘‘patch the bumps.’’ Better learning
schemes move rule patches to or near extrema and then
fill in between extrema with extra rule patches if the rule
budget allows.

The scaling choice B8j 5 aj(x)Bj gives a standard addi-
tive model or SAM. Appendix A shows that taking the

Figure 4. Feedforward fuzzy function approximators. (a) The parallel

associative structure of the additive fuzzy system. Each input vector x [

Rn fires each of m fuzzy rules to some degree. This gives a convex sum

as the output: F(x) 5 Centroid(S j51
m wjaj (x)Bj ) 5 S j51

m pj (x)cj, where

p1(x) 1 · · · 1 pm(x) 5 1, pj(x) $ 0, and cj is the centroid of the jth

then-part fuzzy set Bj. Each input 3 gives a new set of convex

coefficients p1(x), . . . , pm (x). (b) Fuzzy rules define Cartesian rule

patches Aj 3 Bj in the input-output space and cover the graph of the

approximand f. This leads to exponential rule explosion in high

dimensions. Optimal lone rules cover the extrema of the approximand.
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centroid of B(x) in (1) gives (Kosko, 1991, 1994,
1995a, 1995b) the SAM ratio

F(x) 5

o
j51

m

wjaj(x)Vjcj

o
j51

m

wjaj(x)Vj

5 o
j51

m

pj(x)cj. (2)

Here Vj is the finite positive volume or area of then-part
set Bj and cj is the centroid of Bj or its center of mass.
The convex weights p1(x), . . . , pm (x) have the form

pj(x) 5
wjaj(x)Vj

oi51

m wiai(x)Vi

.

Figure 3 shows how supervised learning moves and
shapes the fuzzy rule patches to give a finer approxima-
tion as the system samples more user choices. Appendix
B derives the supervised SAM learning algorithms for
Laplace and sinc set functions (Kosko, 1996; Mitaim &
Kosko, 1996). Supervised gradient descent changes the
SAM parameters with error data. At each time instant t
the system takes an input-output pair (xt, yt) from a
training data set or from sensor data. A user may define
this input-output data pair during the Q&A session or in
a feedback or evaluation processes. Then the fuzzy sys-
tem computes output vector F(xt) from input vector xt.
The learning laws update each SAM parameter to mini-
mize the squared-error E(xt) 5 1⁄2( f (xt) 2 F(xt))2. This
process repeats as needed for a large number of sample

data pairs (xt, yt). Learning moves and shapes the rule
patches that define the SAM system F and gives a finer
approximation of f. Figure 3f displays the absolute error
of the fuzzy function approximation.

3 Agent Architecture

Figure 5 shows our schematic view of an intelligent
agent. The agent can reside in a physical world (robot)
or in a virtual world (softbot) (Jennings & Wooldridge,
1996; Maes, Darrell, Blumberg, & Pentland, 1996).
The interface/sensor module transforms the informa-
tion into a bit stream. The preprocessor compresses the
pattern of objects or actions. The compressed patterns
might be colors or textures used in image search or fil-
tering (Niblack, Barber, Equitz, Flikner, Glassman, Petk-
ovic, Yanker, & Faloutsos, 1993; Swain & Ballard,
1991), keywords used in text search or e-mail classifiers
or news-filtering agents (Maes, 1994), or object features
that agents use if they bargain or negotiate (Chavez &
Maes, 1996; Parsons & Jennings, 1996; Reilly & Bates,
1995; Rosenschein & Zlotkin, 1994; Sandholm &
Lesser, 1995).

A learning and memory module records the com-
pressed patterns of the utility surface. The surface
changes over time as the user gives more Q&A samples.
This gives a bumpy surface that tends to better and bet-
ter match the user’s underlying preference map.

Figure 5. Agent environment. Schematic view of an autonomous agent in a physical or virtual world. The

agent interacts with objects or characters in the environment and adapts itself to better execute its goals.
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The decision-maker module receives the data from the
evaluation module and then decides what to do (Maes,
1995b). A classifier agent sends the control signal to that
class to which the object belongs (Maes, 1994). Then an
agent must decide which step to take next. The agent
may need to bargain or negotiate with other agents
(Chavez & Maes, 1996; Reilly & Bates, 1995).

This paper deals largely with the block that computes
the ‘‘value’’ or ‘‘worth’’ of an object or action. The pref-
erence map u : O = R, defines the value of each object.
The user prefers object O1 to object O2 (or O1 s O2 in
preference notation) if and only if u(O1) $ u(O2). Infor-
mation agents need some form of these preference maps
to decide search issues on their user’s behalfs (Keeney &
Raiffa, 1976; Kirman, Nicholson, Lejter, Dean, Santos,
1993; Mullen & Wellman, 1995; Wellman & Doyle, 1991).
A fuzzy function approximator can give a good approxima-
tion of the preference map if the fuzzy system does not
need too many rules and if the system can sample
enough accurate user preference data. We also suggest a
method to elicit consistent user preference data.

4 Profile Learning with Sunsets
and Flowers

Users can define preference maps on an image
space of sunsets or flowers. Each person has his own likes
or dislikes that define his own fuzzy pattern of object

clusters. The clusters depend on the features that define
the objects. Recent work on object recognition (Swain
& Ballard, 1991) and content-based image retrieval (Ni-
black et al., 1993) suggests that features define the
‘‘look’’ of the images. These features include colors,
shapes, and textures. Research in machine vision seeks
invariant features that can map all images into smaller
clusters (Caelli & Reye, 1993; Chang & Smith, 1995;
Funt, 1995; Niblack et al., 1993; Pentland, Picard, &
Sclaroff, 1994; Picard & Minka, 1995; Swain & Ballard,
1991; Wu, Narasimhalu, Mehtre, & Gao, 1995).

Figure 6 shows a block diagram of a neural fuzzy
agent that learns a user profile in a space of images. We
used a multi-dimensional histogram of an image as fea-
tures for our fuzzy agent prototype. Niblack et al.
(1993) and Swain and Ballard (1991) used color histo-
grams to recognize images and to structure their image
database retrieval systems. The histogram technique it-
self ignores the spatial correlation of pixels in images.
This has led many researchers to suggest other local fea-
tures (Caelli & Reye, 1993; Niblack et al., 1993; Pent-
land et al., 1994). We use the image dispersion sij as an
extra feature (Pratt, 1991):

sij 5
1

W2 3 o
m52w

w

o
n52w

w

3 [x(i 1 m, j 1 n) 2 x(i1 m, j 1 n)]2 4 1/2

(3)

Figure 6. Data acquisition. A fuzzy agent can learn a user’s unknown preference map. The user acts as a

teacher or supervisor and gives the system question-answer training samples. Then supervised gradient

descent tunes the fuzzy system to better approximate the user’s preference map.
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where W 5 2w 1 1 and where

x(i, j) 5
1

W2 o
m52w

w

o
n52w

w

x(i 1 m, j 1 n) (4)

defines the sample mean in the W 3 W window centered
at pixel location (i, j).

For each image we obtain its 4-D normalized histo-
gram. The first three components are hue (h), saturation
(s), and intensity (v) in the hue-saturation-intensity color
space (Pratt, 1991). The other component is the stan-
dard deviation s of the intensity component. We view
this normalized 4-D histogram as an input discrete
probability density function to the fuzzy system and
write it in the form

T(h, s, v, s) 5 o
i51

Nh

o
j51

Ns

o
k51

Nv

o
l51

Ns

ti,j,k,ld(h2 hi)

3 d(s 2 sj)d(v 2 vk)d(s 2 s1).

(5)

Here Nh, Ns, Nv, and Ns are the number of bins on axes
of hue, saturation, intensity, and standard deviation. So
the total number of histogram bins is N 5 Nh 3 Ns 3

Nv 3 Ns. The term hi is the bin center of the ith hue and
likewise for sj, vk, and sl. The term ti,j,k,l is a normalized
frequency of occurrence of the feature vector
(hi, sj, vk, sl). We write the N-bin histogram T in the
more compact form

T(h, s, v, s) 5 T(x) 5 o
n51

N

tnd(x 2 xn). (6)

The vector xn has the center of the histogram bin as its
components: xn 5 (hin

, sjn
, vkn

, sln
) as in (5). The nor-

malized frequency of occurrence tn replaces the corre-
sponding tin,jn,kn

,ln in (5).
This histogram T is the input to the fuzzy system. Ap-

pendix A shows that this gives a generalized SAM ratio
(2) (Kosko, 1991, 1996) as a set SAM system:

F(T) 5

o
j51

m

aj(T)Vjcj

o
j51

m

aj(T)Vj

5 o
j51

m

pj(T)cj. (7)

The convex coefficients pj(T) $ 0 and oj51
m pj(T) 5 1

have the form

pj(T) 5
aj(T)Vj

o
i51

m

ai(T)Vi

. (8)

The correlation of a fuzzy set function aj : X , R4 =

[0, 1] with a 4-D histogram of an image T has the form

aj(T) 5 eX
aj(h, s, v, s)T(h, s, v, s) dh ds dv ds (9)

5 o
n51

N

tnaj(xn). (10)

The value aj(T) states the degree to which fuzzy set T
belongs to fuzzy set Aj. The set correlation aj(T) need
not lie in the unit interval. It can take on any finite non-
negative value: aj(T) [ [0, `). The set SAM ratio in (7)
still gives an output as a convex sum of the then-part set
centroids cj as the point SAM in (2).

We tested the fuzzy agents with 88 flower images and
42 sunset images. Figure 2 shows some of the test im-
ages. We assigned subjective values to all images as num-
bers from 0 to 10. The value 10 stands for ‘‘It is maxi-
mally beautiful’’ or ‘‘I really love it.’’ The value 0 stands
for ‘‘It is minimally beautiful’’ or ‘‘I really hate it.’’ The
histogram bins were 8:4:4:4 for h:s:v:s. So there were a
total of 512 bins. The fuzzy system also had 512 fuzzy
rules. We initialized the fuzzy agent so that it would be
‘‘indifferent’’ to all images (a score of 5) and trained it
with supervised gradient-descent learning. The initial
maximum absolute error was 5, and the mean absolute
error was 2.45. The fuzzy agent converged after 40,000
epochs to our preference map and gave a score close to
ours. This held for almost all test images. The maximum
absolute error was 0.96 and the mean absolute error was
0.18. This error stemmed from too few features. Using
more features tends to improve the system’s accuracy
but at the expense of greater rule complexity.

We used a histogram based on color and variance be-
cause it captured the relative amount of colors in the
image that affect much of human perception (Niblack et
al., 1993; Swain & Ballard, 1991). We can also compute
histograms easily and they are translation and rotation
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invariant (Swain & Ballard, 1991). Our systems for pro-
file learning and searching did not depend on how we
chose object features. The fuzzy agent could use other
inputs from this image database or from others. These
input features might include shapes (Niblack et al.,
1993; Pentland et al., 1994), textures (Caelli & Reye,
1993; Niblack et al., 1993; Pentland et al., 1994; Picard
& Minka, 1995), wavelet transforms (Chang & Smith,
1995; Vetterli & Kovačević, 1995), or other statistical
measures (Pentland et al., 1994).

5 Adaptive Fuzzy Object Matching

This section presents fuzzy equality as a measure of
similarity between objects and shows how to tune it. A
search or filter agent matches objects in the databases to
the query object and acts on the match results. Super-
vised learning tunes the fuzzy equality measure to better
approximate the user’s perception of similar objects.

A fuzzy system can assist in database search in many
ways. Fuzzy matching is perhaps the simplest way. The
fuzzy equality measure (Kosko, 1996) between two
fuzzy sets can define the similarity between objects. The
equality measure E (A, B) measures the degree to which
fuzzy set A equals fuzzy set B. It measures how well A
matches B and vice versa. Suppose fuzzy sets A and B are
nonempty. Then, E (A, B) 5 E (B, A) [ [0, 1],
E (A, A) 5 1, and E (A, Ø) 5 0 for the empty set Ø.
The equality measure depends on the counting or cardi-
nality (Kosko, 1991) function c of a fuzzy set as

E (A, B) 5 Degree(A 5 B)

5
c(A > B)

c(A < B)
5

e min (a(x), b(x)) dx

e max (a(x), b(x)) dx

(11)

where

c(A) 5 o
i51

N

ai or c(A) 5 eRn a(x) dx (12)

for an integrable fuzzy set function a : X = [0, 1]. The
fuzzy equality measure rests on the theory of fuzzy sets
as points in unit hypercubes or fuzzy cubes. Appendix C

reviews this unit-cube geometry of discrete fuzzy sets
(Kosko, 1991, 1996).

Consider an example. Let a 5 (0.8 0.4 0) and b 5

(0.1 0.5 0.2) be discrete set functions for fuzzy sets A
and B in X 5 5x1, x2, x36 . So the set function or fit vector
a 5 (a1 a2 a3) defines the fuzzy set A as a1 5 a(x1) 5

0.8, a2 5 a(x2) 5 0.4 and a3 5 a(x3) 5 0. The fit vector
b defines the fuzzy set B as b1 5 b(x1) 5 0.1, b2 5

b(x2) 5 0.5, and b3 5 b(x3) 5 0.2. Then fuzzy set A
equals fuzzy set B to degree one-third:

E (A, B) 5 Degree (A 5 B) 5
c(A > B)

c(A < B)
(13)

5
oi51

3 min (ai, bi)

oi51
3 max (ai, bi)

(14)

5
0.1 1 0.4 1 0

0.8 1 0.5 1 0.2
5

1

3
. (15)

A fuzzy system maps two objects (or their two vectors
of ‘‘features’’) to the output fuzzy sets A and B. Then
the equality measure gives a value near 1 if the two ob-
jects match well or ‘‘look alike.’’ It gives a value near 0 if
they match poorly.

We use the same histogram features as in the prior
section to match images. Let TA and TB be the histo-
grams of two images. Again we view these two normal-
ized N-bin histograms as discrete probability density
functions whose domain X 5 5x1, . . . , xN 6 is a set of vec-
tors xi that define the bin centers. This gives the same
form as in (6). Then we compute the correlation of a set
function aj with two histograms TA and TB as in (10)
with

Aj 5 aj(TA) 5 o
n51

N

TA(xn)aj(xn) (16)

Bj 5 aj(TB) 5 o
n51

N

TB(xn)aj(xn). (17)

This gives two m-D vectors of set values (A1, . . . , Am)
and (B1, . . . , Bm) from m fuzzy rules. The standard ad-
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ditive structure of fuzzy systems suggests that the out-
put fuzzy set should equal the sum of the scaled then-
part sets (Kosko, 1996). So we define the then-part sets
to be the same as the if-part sets. So the output fuzzy
sets A and B from the histograms TA and TB have the
form

A(x) 5 o
j51

m

Ajaj(x) (18)

B(x) 5 o
j51

m

Bjaj(x) (19)

where x 5 (h, s, v, s) [ X. The input to the system is
an N-bin histogram on the discrete domain X 5

5x1, . . . , xN 6. Then we can view the output sets A and B
as discrete sets and rewrite (18)–(19) as

A(xn) 5 o
j51

m

Ajaj(xn) (20)

B(xn) 5 o
j51

m

Bjaj(xn) (21)

for n 5 1, . . . , N. Then the fuzzy equality (in the dis-
crete case) in (11) measures the degree to which fuzzy
set A equals or matches fuzzy set B:

E (A, B) 5

o
i51

N

min (A(xi), B(xi))

o
i51

N

max (A(xi), B(xi))

(22)

This in turns measures the ‘‘similarity’’ between two
images.

The similarity measure depends on how we define the
m fuzzy rules. Tuning or learning schemes can move or
reshape the fuzzy sets to approximate desired matching
values. Appendix C derives the learning laws that tune
the set-function parameters in E.

Figure 7 shows a block diagram of how a fuzzy agent
matches images. The simulation used a 4-D version of
the 1-D Laplace set function aj(x) 5 exp 52 0(x 2 mj)/
dj 0 6 in (107)–(108). We trained the fuzzy matching sys-
tem on a space of sunset images with the histogram in-

tersection in Swain and Ballard (1991):

S(H, I ) 5

o
i51

N

min (Hi, Ii)

o
i51

N

Hi

. (23)

The fuzzy system gave a rough approximation of the
histogram intersection. We may not be able to find a
closed-form formula for matching in the general case.
Then the fuzzy matching process might learn from
Q&A sessions or from other user feedback.

6 The Agent-User Interface:
The Q&A Bottleneck

How does an agent get numerical values for sam-
ple objects? What questions should the agent ask the
user in a Q&A session? How many objects must a user
rank? These questions reveal the practical weakness of
any search system that depends on numbers. Cardinal
data eases numerical processing but comes at the ex-
pense of a question-answer bottleneck.

This section reviews some of the techniques used in
decision theory to rank objects. We show how to apply
the technique to obtain numerical values for all sample
objects. Other criteria can help agents ask users new
questions in Q&A sessions.

Suppose a user states a subjective numerical value for
each sample object in a list. There are problems with this
absolute valuation beyond its artificial nature and the
sheer inconvenience it forces on the user. Miller (1956)
observed that the largest number of objects that our
minds can process at one time is the ‘‘magic number’’
7 6 2. We tend to forget how we have ranked objects at
the top of the list when we rank objects at the bottom of
the list. Relative rankings can increase the ‘‘capacity’’ of
our information processing (Miller, 1956). Then tech-
niques in decision theory allow us to rank objects with
only pairwise comparisons (Cook & Kress, 1992; Kee-
ney & Raiffa, 1976; Kendall & Gibbons, 1990; Saaty,
1977). We can compute these relative object weights
and convert them to the user’s absolute weights.
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Saaty’s analytic hierarchy process (AHP) (Saaty, 1977,
1986, 1994) can find the numerical values. AHP com-
putes the relative weights w 5 (w1, . . . , wn) of n objects
from their pairwise comparisons. Let aij be a ratio scale
(Saaty, 1977) of comparison of object Oi and Oj. Then a
reciprocal matrix A 5 [aij] has its elements of the form
aij 5 1/aji for i, j 5 1, . . . , n. So the diagonal entries

are always unity: aii 5 1 for all i 5 1, . . . , n. The claim
‘‘I like object O1 twice as much as I like object O2’’ gives
a12 5 2. Its reciprocal a21 5 1⁄2 gives the claim ‘‘I like
object O2 half as much as I like object O1.’’ The principle
eigenvector w of a matrix A obeys the equation Aw 5

lmaxw. The Perron-Frobenius theorem of matrix algebra
ensures that lmax is the unique maximum (positive) eig-

Figure 7. Adaptive fuzzy search. Fuzzy equality measures the likeness of two objects A and B. Supervised

learning tunes the fuzzy equality measure E (A, B) inside the fuzzy-cube state space to better approximate

the user’s perception of similar images. The equality measure grows to unity as the A and B set points

approach each other. The cube midpoint M is the maximally fuzzy set whereh E (M, Mc) 5 1. Binary sets

V lie at the 2n cube vertices and they alone give E (V, Vc) 5 0.
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envalue of A (Franklin, 1968). The components of w are
always positive and allow us to recover the relative object
weights (Saaty, 1977).

Suppose reciprocal matrices A and B for objects O1,
O2, O3, and O4 have the values

The matrix A contains many claims such as ‘‘I like object
O2 twice as much as I like object O1 and ten times as
much as I like object O3. I like the object O1 as much as I
like O4.’’ Users may prefer to say that they like an object
O2 ten times as much as they like O3 than to say that they
like O3 one-tenth as much as they like O2. Agents can
offer users both options.

The matrix A is ‘‘consistent’’ but B is not. A matrix is
consistent when its elements aik obey ai k 5 aijaj k for all
i, j, k 5 1, . . . , n (Saaty, 1977). Each row of a consis-
tent matrix is a multiple of the first row. Consistency also
implies transitivity: the claim a23 5 a21a13 implies that, if
we prefer O2 to O1 (O1 s O2) and if we prefer O1 to O3

(O1 s O3), then we prefer O2 to O3 (O2 s O3). But pair-
wise comparisons are often inconsistent. So the weight
matrix may look more like B than like A. The maximum
eigenvalue lmax obeys lmax $ n. The equality lmax 5 n
holds if and only if the reciprocal matrix A is consistent.
The consistency measure m 5 (lmax 2 n)/(n 2 1) can
help the agent decide whether it needs to ask a user to
verify the rankings (Saaty, 1977, 1994).

The principle eigenvectors, w 5 (w1, w2, w3, w4) and
v 5 (v1, v2, v3, v4), reflect the relative weights of objects
from comparison matrices A and B. The preference or-
der from A is O2 s O1 , O4 s O3, where , denotes the
indifference preference between two objects. The prefer-
ence order from B is O2 s O1 s O4 s O3. Then a linear
(affine) transformation L relates the weights to the user’s
subjective values: u(Oi) 5 L(wi) 5 cwi 1 d for some
c . 0 and some d [ R. This holds because we assume
that w measures the relative utility of objects and be-
cause a linear transformation preserves the structure of a
utility function (Debreu, 1983; Hildenbrand & Kirman,
1976; Owen, 1995).

An agent must interact with the user to get the trans-
form coefficients c and d. The agent picks any two ob-
jects that have different weights and asks the user to give
nonnegative weights for both objects. Then the agent
can solve for the coefficients c and d and find the rest of
the object weights. Arbitrary positive values for two
mid-rank objects can give negative values for low-rank
objects. So the highest-rank and lowest-rank objects are
often the best choice. Suppose for matrix B that u(O2) 5

10 and u(O3) 5 1. Then c 5 20.55, and d 5 20.15.
This gives u(O1) 5 cv1 1 d 5 20.55 3 0.242 2 0.15 5

4.82, and u(O4) 5 20.55 3 0.208 2 0.15 5 4.12.
Consistency gives a linear ranking complexity. A con-

sistent user needs to give only n 2 1 pairwise rankings to
construct a matrix. Then we can deduce the other en-
tries from aij 5 aikakj for all i, j, k 5 1, . . . , n. But hu-
mans are seldom consistent. So an agent may need the
user to give 1⁄2(n2 2 n) rankings to form a matrix. This
may not be practical for large n. The agent can estimate
the matrix entries with the geometric mean of all paths
in the matrix from the first n rankings (Harker, 1987).
The agent can also use other criteria (Harker, 1987; Mil-
let & Harker, 1990) to ask the user for additional pair-
wise rankings. This can reduce the number of rankings
from 1⁄2(n2 2 n) rankings to on the order of n rankings.

A final remark concerns scaling fuzzy profiles. A linear
transformation L both preserves the structure of a pref-
erence map (Debreu, 1983; Hildenbrand & Kirman,
1976; Owen, 1995) and preserves how the agent’s neu-
ral fuzzy system models the preference map. This always
holds for the SAM fuzzy system F. Suppose the linear

A O1 O2 O3 O4 w

O1 1 1⁄2 5 1 0.238

O2 2 1 10 2 0.476

O3 1⁄5 1⁄10 1 1⁄5 0.048

O4 1 1⁄2 5 1 0.238

B O1 O2 O3 O4 v

O1 1 1⁄2 5 1 0.242

O2 2 1 7 3 0.494

O3 1⁄5 1⁄7 1 1⁄4 0.056

O4 1 1⁄3 4 1 0.208
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transformation L consists of the matrix C and the vector
d. Then (2) gives

L(F(x)) 5 CF(x) 1 d 5 C 1o
j51

m

pj(x)cj 2 1 d (24)

5 o
j51

m

pj (x) (Ccj) 1 d (25)

5 o
j51

m

pj(x)(Ccj 1 d)

since o
j51

m

pj(x) 5 1

(26)

5 o
j51

m

pj(x)c 8j (27)

where c 8j 5 Ccj 1 d 5 L(cj). So an agent can change the
profile to match the user’s new scale or new set of data.
A neural fuzzy agent may also want to rescale its profiles
for large hierarchical systems in which each system level
has its own ratio scale.

7 Conclusion

Neural fuzzy systems can assist agents in many
ways. We have shown how these adaptive function ap-
proximators can both help learn a user’s preference map
and help choose preferred search objects cast as features
of low dimension. The color histogram we used did not
give a complete set of features. Other neural fuzzy sys-
tems can more fully combine these two fuzzy tasks to aid
in agent database search. Future research may depend on
advances in pattern recognition and machine vision.
Neural fuzzy systems might also assist agents when
agents bargain (Chavez & Maes, 1996; Reilly & Bates,
1995; Rosenschein & Zlotkin, 1994) or cooperate
(Dorigo, Maniezzo, & Colorni, 1996; Moukas, 1996)
with other agents. Then an agent may try to learn a sec-
ond or third user’s profile as well as learn its master’s
profile.

Agents could also help neural fuzzy systems approxi-
mate functions from training samples. Today most neu-

ral fuzzy systems work with just one fuzzy system and
one supervised or unsupervised learning law. Rule explo-
sion in high dimensions may force the user to replace the
lone fuzzy system with several smaller systems. Agents
can help combine these fuzzy systems (Kosko, 1995a,
1996) if they pick and change the weights or rankings of
each system based on sample data or domain knowledge.
Agents can also pick which learning law or which set of
parameters to use as the system tunes its rules on-line.
Still more complex hybrids can use nested agents within
multi-system function approximators and use the ap-
proximators to help higher-level agents learn profiles
and search databases and perhaps perform other agent
tasks.

The neural fuzzy agent needs to improve how it ac-
quires knowledge (Kilpatrick, Gunsch, & Santos, 1996;
Santos & Banks, 1996). The agent should not ask the
user too many questions. The agent needs to learn the
user’s profile fast enough before it tires the user. Effi-
cient agents would make the user state rankings that are
at most linear in the number of search objects or search-
object clusters. Our system asks the user a large number
of numerical questions even though the user may not
want to and perhaps cannot give precise numerical an-
swers to these questions. Researchers have long searched
for techniques that can lessen the number of numerical
questions the system must ask the user (Kilpatrick, Gun-
sch, & Santos, 1996; Santos & Banks, 1996). The boot-
strap and other statistical methods (Efron & Tibshirani,
1993) may offer more efficient ways for an adaptive
agent to sample its user and its environment. Ordinal or
chunking techniques (Laird, Newell, & Rosenbloom,
1987; Miller, 1956; Newell & Rosenbloom, 1981) may
also ease the burden of preference acquisition. But all
such techniques tend to increase the complexity of the
neural and fuzzy systems.
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Appendix A. The Standard Additive
Model (SAM) Theorem

This appendix derives the basic ratio structure (2) of a
standard additive fuzzy system.

SAM Theorem. Suppose the fuzzy system F :
Rn = Rp is a standard additive model: F(x) 5 Cen-
troid(B(x)) 5 Centroid(oj51

m wjaj(x)Bj) for if-part joint
set function aj: Rn = [0, 1], rule weights wj $ 0, and
then-part fuzzy set Bj , Rp. Then F(x) is a convex sum
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of the m then-part set centroids:

F(x) 5

o
j51

m

wjaj(x)Vjcj

o
j51

m

wjaj(x)Vj

5 o
j51

m

pj(x)cj. (28)

The convex coefficients or discrete probability weights
p1(x), . . . , pm(x) depend on the input x through

pj(x) 5
wjaj(x)Vj

o
i51

m

wiai(x)Vi

. (29)

Vj is the finite positive volume (or area if p 5 1) and cj is
the centroid of then-part set Bj:

Vj 5 eRp bj(y1, . . . , yp) dy1 · · ·dyp . 0 (30)

cj 5
eRp ybj(y1, . . . , yp) dy1· · · dyp

eRp bj(y1, . . . , yp) dy1 · · ·dyp

.

(31)

Proof. There is no loss of generality to prove the
theorem for the scalar-output case p 5 1 when F : Rn =

Rp. This simplifies the notation. We need but replace the
scalar integrals over R with the p-multiple or volume
integrals over Rp in the proof to prove the general case.
The scalar case p 5 1 gives (30) and (31) as

Vj 5 e
2`

`
bj(y) dy (32)

cj 5
e

2`

`
ybj(y) dy

e
2`

`
bj(y) dy

. (33)

Then the theorem follows if we expand the centroid of B
and invoke the SAM assumption F(x) 5 Centroid
(B(x)) 5 Centroid(oj51

m wjaj(x)Bj) to rearrange terms:

F(x) 5 Centroid(B(x)) (34)

5
e

2`

`
yb(y) dy

e
2`

`
b(y) dy

(35)

5

e
2`

`
y o

j51

m

wjb8j(y) dy

e
2`

` o
j51

m

wjb 8j(y) dy

(36)

5

e
2`

`
y o

j51

m

wjaj(x)bj(y) dy

e
2`

` o
j51

m

wjaj(x)bj( y) dy

(37)

5

o
j51

m

wjaj(x) e
2`

`
ybj(y) dy

o
j51

m

wjaj(x) e
2`

`
bj(y) dy

(38)

5

o
j51

m

wjaj(x)Vj

e
2`

`
ybj(y) dy

Vj

o
j51

m

wjaj(x)Vj

(39)

5

o
j51

m

wjaj(x)Vjcj

o
j51

m

wjaj(x)Vj

h (40)

Generalizing the SAM system leads to the set SAM F
that maps fuzzy sets A in the input space Rn to vector
points y in the output space Rp. So the set SAM F :
F(2Rn) = Rp has as its domain the fuzzy power set
F(2Rn) or the set of all fuzzy subsets A , Rn with arbi-
trary set function a : Rn = [0, `). The point SAM is a
special case of the set SAM for a singleton input fuzzy
set A 5 5x06 , Rn: a(x) 5 d(x 2 x0) where d is a Dirac
delta function in the continuous case or a unit bit vector
in the discrete case. Correlation computes the ‘‘fired’’ fit
value of the jth set aj(A) as (Kosko, 1996)

aj(A) 5 e a(x)aj(x) dx. (41)

Then the fired fit value aj(x0) of the singleton set A 5
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5x06 follows from the sifting property of delta pulses:

aj(A) 5 e a(x)aj(x) dx (42)

5 e d(x 2 x0)aj(x) dx (43)

5 aj(x0). (44)

The set SAM equation follows from the SAM additive
combiner B(A) 5 oj51

m wjaj(A)Bj (Kosko, 1996):

F(A) 5 Centroid(B(A)) (45)

5 Centroid 1o
j51

m

wjaj(A)Bj 2 (46)

5

o
j51

m

wjaj(A)Vjcj

o
j51

m

wjaj(A)Vj

5 o
j51

m

pj(A)cj. (47)

where the convex coefficients p1(A), . . . , pm(A) depend
on the input fuzzy set A through

pj(A) 5
wjaj(A)Vj

o
i51

m

wiai(A)Vi

. (48)

Appendix B. Supervised SAM Learning

Supervised gradient-descent can tune all the parameters
in the SAM model (2) (Kosko, 1995, 1996). A gradient-
descent learning law for a SAM parameter j has the form

j(t 1 1) 5 j(t)2 mt

­E

­j
(49)

where mt is a learning rate at iteration t. We seek to mini-
mize the squared error

E(x) 5 1⁄2( f(x) 2 F(x))2 (50)

of the function approximation. Let jj
k denote the kth

parameter in the set function aj. Then the chain rule
gives the gradient of the error function with respect to

jj
k, with respect to the then-part set centroid cj, and with

respect to the then-part set volume Vj:

­E

­jj
k

5
­F

­F

­F

­aj

­aj

­jj
k

,
­E

­cj
5

­E

­F

­F

­cj
,

and
­E

­Vj
5

­E

­F

­F

­Vj

(51)

where

­E

­F
5 2( f(x) 2 F(x)) 5 2e(x) (52)

­F

­aj

5

1o
i51

m

wiai(x)Vi2(wjVjcj) 2 wjVj 1 o
i51

m

wiai(x)Vici2

1o
i51

m

wiai(x)Vi2 2

(53)

5
[cj 2 F(x)]wjVj

o
i51

m

wiai(x)Vi

5 [cj 2 F(x)]
pj(x)

aj(x)
. (54)

The SAM ratio (2) gives (Kosko, 1995a, 1996)

­F

­cj
5

wjaj(x)Vj

o
i51

m

wiai(x)Vi

5 pj(x) (55)

and

­F

­Vj
5

wjaj(x)[cj 2 F(x)]

o
i51

m

wiai(x)Vi

5
pj(x)

Vj
[cj 2 F(x)] . (56)

Then the learning laws for the centroid and volume have
the final form

cj(t1 1) 5 cj(t) 1 mte(x)pj(x) (57)

and

Vj(t 1 1) 5 Vj(t)1 mte(x)
pj(x)

Vj
[cj 2 F(x)]. (58)

Learning laws for set parameters depend on how we
define the set functions. The scalar Laplace set function
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has the form aj(x) 5 exp 52 0(x 2 mj)/dj 06. The partial
deviatives of the set function with respect to its two pa-
rameters mj and dj have the form

­aj

­mj
5 sign (x 2 mj)

1

0dj 0
aj(x) (59)

­aj

­mj
5 sign (dj)

0x 2 mj 0

0dj
2 0

aj(x)

(60)

where we define the sign function as

sign (x) 5 5
1 if x . 0

21 if x , 0

0 if x 5 0

. (61)

Substitute (59)–(60) in (51) and in (49) to obtain the
learning laws

mj(t1 1) 5 mj(t)

1 mte(x)[cj2 F(x)]pj(x) sign (x 2 mj)
1

0dj 0

(62)

dj(t 1 1) 5 dj(t)

1 mte(x)[cj 2 F(x)]pj(x) sign (dj)
0x 2 mj 0

dj
2

.
(63)

The partial derivatives for the scalar sinc set function
aj(x) 5 sin ((x 2 mj)/dj)/ ((x 2 mj)/dj) have the form

­aj

­mj
5 51aj(x) 2 cos 1x 2 mj

dj
22 1

x 2 mj
for x Þ mj

0 for x 5 mj

(64)

­aj

­dj
5 1aj(x) 2 cos 1x 2 mj

dj
221dj

. (65)

So this scalar set function has the learning laws

mj(t 1 1) 5 mj(t)1 mte(x)[cj2 F(x)]
pj(x)

aj(x)

3 1aj(x) 2 cos 1x 2 mj

dj
22 1

x 2 mj

(66)

dj(t 2 1) 5 dj(t)1 mte(x)[cj 2 F(x)]
pj(x)

aj(x)

3 1aj(x) 2 cos 1x 2 mj

dj
22 1

dj
.

(67)

Like results hold for the learning laws of product n-D
set functions. A factored set function aj(x) 5

aj
1(x1) · · · aj

n(xn) leads to a new form for the error gra-
dient. The gradient with respect to the parameter mj

k of
the jth set function aj has the form

­E

­mj
k

5
­E

­F

­F

­aj

­aj

­aj
k

­aj
k

­mj
k

where
­aj

­aj
k

5 p
iÞk

n

aj
i(xi) 5

aj(x)

aj
k(xk)

.

(68)

We used product of the scalar sinc set function to de-
fine the if-part fuzzy set Aj , Rn in the fuzzy profile ap-
proximator, and we used product of the scalar Laplace
set function for the fuzzy equality measure. But we used the
set SAM system instead of the simple point SAM. The
learning laws follow from the structure of the set SAM.

We now derive learning laws for the set SAM. The
chain-rule terms in (51) become

­E

­jj
k

(A) 5
­E

­F
(A)

­F

­aj
(A)

­aj

­jj
k

(A) (69)

­E

­cj
(A) 5

­E

­F
(A)

­F

­cj
(A) (70)

­E

­Vj
(A) 5

­E

­F
(A)

­F

­Vj
(A). (71)

Then (52)–(56) give

­E

­F
(A) 5 2(f (A) 2 F(A))5 2e(A) (72)

­F

­aj
(A) 5 [cj 2 F(A)]

pj(A)

aj(A)
(73)

­F

­cj
(A) 5 pj(A) (74)

­F

­Vj
(A) 5

pj(A)

Vj
[cj 2 F(A)]. (75)

The learning laws for then-part set centroids cj and vol-
umes Vj are

cj(t 1 1) 5 cj(t) 1 mte(A)pj(A) (76)

Vj(t 1 1) 5 Vj(t) 1 mte(A)
pj(A)

Vj
[cj 2 F(A)]. (77)
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But the partial derivative of the jth set function with re-
spsect to its parameters jj

k has the new form

­aj

­jj
k

(A) 5
­

­jj
k e aj(x)a(x) dx (78)

5 5e
­aj

­jj
k

(x)a(x) dx continuous case

o ­aj

­jj
k

(x)a(x) discrete case

(79)

Then we substitute these partial derivatives into (49) to
obtain the set-SAM learning rules.

Appendix C. Sets as Points: The Geometry
of Discrete Fuzzy Sets

This appendix reviews the unit-cube geometry of dis-
crete fuzzy system and derives the new adaptive equality

measure. Let X be a set of n elements: X 5 5x1, . . . , xn 6.
Any subset A , X defines a point in the n-D unit hyper-
cube In unit hypercube In 5 [0, 1]n. The set of all fuzzy
subsets of X or F(2X) fill in the cube. So the ordinary
power set 2X or the set of all 2n subsets of X equals the
Boolean n-cube Bn: 2X 5 Bn. Fuzzy subsets A , X de-
fine the points inside or on the n-D unit hypercube
(Kosko, 1991, 1996) as in Figure 8. A set A , X is
fuzzy when the ‘‘laws’’ of noncontradiction and ex-
cluded middle do not hold: A > Ac Þ B and
A < Ac Þ X.

Figure 8 shows an example when X 5 5x1, x2 6. Then
there are four binary subsets of X : 2X 5 5B, 5x1 6, 5x2 6,
5 x1, x2 66. The space X 5 5x1, x2 6 lies at (1, 1). The empty
set B lies at the origin (0, 0) and the other two (stan-
dard) subsets 5x1 6 and 5x2 6 are at (1, 0) and (0, 1). A
fuzzy subset A , X defines the fuzzy unit or fit vec-
tors A 5 (a1, a2) [ I2 for a1, a2 [ [0, 1]. Figure 8a
shows an example of a fuzzy set A. The geometrical
view reveals the 2n-fold symmetry of the set A and

Figure 8. Geometry of discrete fuzzy sets. Sets as points in a unit hypercube or fuzzy cube. Fuzzy set A ,

X 5 5x1, . . . , xn6 defines a point in the fuzzy cube [0, 1]n. Here X 5 5x1, x26, A 5 (2⁄3, 1⁄4), and B 5 (1⁄3, 3⁄4).

We define fuzzy-set intersection fitwise with pairwise minimum, union with pairwise maximum, and

complementation with order reversal (ac(x) 5 1 2 a(x)). F(2A) and F(2B) define the fuzzy power sets or

the sets of all fuzzy subsets of A and B. Each set C , X is a subset of A to some degree and so C belongs

to F(2A) to some degree. C is a 100% subset of A if and only if c(x) # a(x) for all x [ X. Then C [ F(2A),

and so the set point C lies on or inside the hyper-rectangle F(2A). Partial subsets lie outside F(2A).
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its set operation products with respect to the midpoint.
The midpoint is the maximal fuzzy set. It alone obeys
A 5 Ac. The midpoint alone has spherical symmetry
and lies equidistant to all 2n cube vertices.

Figure 8b shows the 2-D cube with the fuzzy sets A 5

(2⁄3, 1⁄4) and B 5 (1⁄3, 3⁄4). We can define fuzzy-set inter-
section fitwise with pairwise minimum, union with pair-
wise maximum, and complementation with order rever-
sal:

a > b(x) 5 min (a(x), b(x)) (80)

a < b(x)5 max (a(x), b(x)) (81)

ac(x) 5 1 2 a(x) (82)

The subsethood theorem (Kosko, 1991) measures the
degree to which a set A contains in a set B and does so in
a simple ratio of cardinalities:

S(A, B) 5 Degree (A , B) 5
c(A > B)

c(A)
(83)

where c is a counting or cardinality (Kosko, 1991) mea-
sure

c(A) 5 o
xi[X

a(xi) or c(A) 5 eX
a(x) dx (84)

for integrable fuzzy set function a : X = [0, 1]. This
positive measure stems from the geometric interpreta-
tion of the fuzzy power sets F(2A) and F(2B) (Kosko,
1991, 1996). The subsethood measure extends the his-
togram intersection in (23). The subsethoods need not
be symmetric: S(A, B) Þ S(B, A). So we use a new sym-
metric measure (Kosko, 1996) of fuzzy equality as in
(11):

E(A, B) 5 Degree(A 5 B) 5
c(A > B)

c(A < B)
(85)

5
S(A, B)S(B, A)

S(A, B) 1 S(B, A) 2 S(A, B)S(B, A)
. (86)

Then we use the identities min (a, b) 5 1⁄2(a 1 b 2

0a 2 b 0) and max (a, b) 5 1⁄2(a 1 b 1 0a 2 b 0) to derive

(90):

E (A, B) 5
c(A > B)

c(A < B)
5

e min (a(x), b(x)) dx

e max (a(x), b(x)) dx
(87)

5

e a(x) 1 b(x)
2 0a(x) 2 b(x) 0 dx

e a(x) 1 b(x)
1 0a(x)2 b(x) 0 dx

(88)

5

1 2
e 0a(x) 2 b(x) 0dx

e a(x) 1 b(x)dx

1 1
e 0a(x) 2 b(x) 0dx

e a(x) 1 b(x)dx
(89)

5
1 2 d(A, B)

1 1 d(A, B)
(90)

where fuzzy set A , Rn has set function a : Rn = [0, 1]
and B , Rn has set function b : Rn = [0, 1] and

\A 2 B \ 5 e 0a(x) 2 b(x) 0dx (91)

\A 1 B \ 5 e 0a(x) 1 b(x) 0dx (92)

and d(A, B) 5
\A 2 B \

\A 1 B \
5

e 0a(x) 2 b(x) 0dx

e 0a(x) 1 b(x) 0dx
. (93)

Sums can replace the integrals in the discrete case.
We next derive a supervised learning law to tune the

parameters of the set functions. Square error for a de-
sired matching value D has the form E 5 1⁄2(D 2 E )2.
The chain rule gives the derivative of the squared error
with respect to the kth parameter of the jth set function
mj

k as

­E

­mj
k

5
­E

­E

­E

dd

­d

­mj
k

. (94)

The derivatives have the form

­E

­E
5 2[D(A, B) 2 E (A, B)] (95)
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­E

­d
5 2

1 1 E (A, B)

1 1 d(A, B)
(96)

­d

­mj
k

5
1

\A 1 B \

3 1
­

­mj
k

\A 2 B \ 2 d(A, B)
­

­mj
k

\A 1 B \2 .

(97)

We now derive the derivatives of the ‘‘norms’’
\A 2 B \ and \A 1 B \ for the discrete sets A and B with
respect to the parameter mj

k in our image matching
problems. The result follows from equations (16)–(17)
and

d(A, B) 5
\A 2 B \

\A 1 B \
5

o
i51

N

0A(xi) 2 B(xi) 0

o
i51

N

0A(xi) 1 B(xi) 0

(98)

and the assumption that each set has its own indepen-
dent parameters (so ­ai/­mj

k 5 0 for i Þ j):

The derivation proceeds in like manner for
­\A 1 B \/­mj

k as

­

­mj
k

\A 1 B \ 5 [aj(TA) 1 aj(TB)] o
i51

N ­aj(xi)

­mj
k

1 1
­aj(TA)

­mj
k

1
­aj(TB)

­mj
k 2 o

i51

N

aj(xi)

(106)

since a(x) $ 0 for all x [ X. The condition aj(TA) 5

oi51
N tA

i aj(xi) and aj(TB) 5 oi51
N tB

i aj(xi) from (10) gives

­aj

­mj
k

(TA) 5 o
i51

N

tA
i

­aj

­mj
k

(xi) (107)

­aj

­mj
k

(TB) 5 o
i51

N

tB
i

­aj

­mj
k

(xi) . (108)

Appendix B derives the partial derivatives of the Laplace
set function aj with respect to its two parameters in
equations (59)–(60). Then substitute (107)–(108) into
(105)–(106) to obtain (97) and substitute (95)–(97) to

­

­mj
k

\A 2 B \

5
­

­mj
k o

i51

N

0A(xi) 2 B(xi) 0 (99)

5 o
i51

N

sign (A(xi) 2 B(xi))
­

­mj
k

(A(xi) 2 B(xi)) (100)

5 o
i51

N

3sign (A(xi) 2 B(xi))
­

­mj
k 1o

l51

m

Alal(xi) 2 o
l51

m

Blal(xi)2 4 (101)

5 o
i51

N

3sign (A(xi) 2 B(xi))
­

­mj
k 1o

l51

m

al(xi)(al(TA) 2 al(TB))2 4 (102)

5 o
i51

N

3sign(A(xi) 2 B(xi)) o
l51

m

1 ­

­mj
k

al(xi)(al(TA) 2 al(TB))24 (103)

5 o
i51

N

sign (A(xi) 2 B(xi))3[aj(TA) 2 aj(TB)]
­aj(xi)

­mj
k

1 aj(xi)1­aj(TA)

­mj
k

2
­aj(TB)

­mj
k 24 (104)

5 [aj(TA) 2 aj(TB)] o
i51

N

sign (A(xi) 2 B(xi))
­aj(xi)

­mj
k

1 1
­aj(TA)

­mj
k

2
­aj(TB)

­mj
k 2o

i51

N

sign (A(xi) 2 B(xi))aj(xi) (105)
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obtain (94) and the learning law for each parameter in
the form of (49):

mj
k(t 1 1) 5 mj

k(t) 2 mt(D(A, B) 2 E (A, B))
1 1 E (A, B)

1 2 d(A, B)

1

\A 1 B \ 3(aj(TA) 2 aj(TB)) o
i51

N

sign (A(xi)

2 B(xi)) sign (xi 2 mj
k)

1

0dj
k 0

aj(xi) 1 1o
51

N

(t A
i 2 t B

i ) sign (xi 2 mj
k)

1

0dj
k 0

aj(xi)2 o
i51

N

sign (A(xi) 2 B(xi))aj(xi)

2 d(A, B) 1(aj(TA) 2 aj(TB)) o
i51

N

sign (xi 2 mj
k)

1

0dj
k 0

aj(xi) 1 1o
i51

N

(tA
i 2 tB

i ) sign (xi 2 mj
k)

1

0dj
k 0

aj(xi)2o
i51

N

aj(xi)24

(109)

dj
k(t11)5 dj

k(t) 2 mt(D(A, B) 2 E (A, B))
1 1 E (A, B)

1 2 d(A, B)

1

\A 1 B \ 3(aj(TA) 2 aj(TB)) o
i51

N

sign (A(xi)

2 B(xi)) sign(dj
k)

0xi 2 mj
k 0

0dj
k 02

aj(xi) 1 1o
i51

N

(t A
i 2 t B

i ) sign(dj
k)

0xi 2 mj
k 0

0d j
k 02

aj(xi)2 o
i51

N

sign (A(xi) 2 B(xi))aj (xi)

2 d(A, B)1(aj(TA) 2 aj(TB)) o
i51

N

sign (dj
k)
0xi 2 mj

k 0

0dj
k 02

aj(xi) 1 1o
i51

N

(tA
i 2 tB

i ) sign (dj
k)
0xi 2 mj

k 0

0dj
k 02

aj(xi)2o
i51

N

aj(xi)24.

(110)
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