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Robust stochastic resonance for simple threshold neurons
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Simulation and theoretical results show that memoryless threshold neurons benefit from small amounts of
almost all types of additive noise and so produce the stochastic-resonance or SR effect. Input-output mutual
information measures the performance of such threshold systems that use subthreshold signals. The SR result
holds for all possible noise probability density functions with finite variance. The only constraint is that the
noise mean must fall outside a “forbidden” threshold-related interval that the user can control—a new theorem
shows that this condition is also necessary. A corollary and simulations show that the SR effect occurs for
right-sided beta and Weibull noise as well. These SR results further hold for the entire uncountably infinite
class of alpha-stable probability density functions. Alpha-stable noise densities have infinite variance and
infinite higher-order moments and often model impulsive noise environments. The stable noise densities
include the special case of symmetric bell-curve densities with thick tails such as the Cauchy probability
density. The SR result for alpha-stable noise densities shows that the SR effect in threshold and thresholdlike
systems is robust against occasional or even frequent violent fluctuations in noise. Regression analysis reveals
both an exponential relationship for the optimal noise dispersion as a function of the alpha bell-curve tail
thickness and an approximate linear relationship for the SR-maximal mutual information as a function of the
alpha bell-curve tail thickness.
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I. ALMOST ALL THRESHOLD SYSTEMS EXHIBIT rem 2.) shows that this also holds for all infinite-variance
STOCHASTIC RESONANCE densities that belong to the large class of stable distributions.

Several researchers have found that threshold neurons afR@th theorems assume that all signals are subthreshold sig-
other threshold systems exhibit stochastic resondheg]: ~ Nals. The two new theorem@heorems 1.2 and 2 Zhow
Small amounts of noise improve the threshold neuron'ghat there is no SR effect if the mean or location parameters
input-output correlation measuf®,10 or mutual informa-  fall within the forbidden threshold interval. Figure 4 shows a
tion [1,8,11]. All of these simulations and analyses assume simulation instance of this predicted forbidden-interval effect
noise probability density function that has finite variance.for Gaussian and Cauchy noise.

Most further assume that the noise is simply Gaussian or The paper then presents several regression analyses of
uniform. Yet the statistics of real-world noise can differ sub-simulation experiments that confirm and extend the exponen-
stantially from these simple and finite-variance probabilitytial relationship between the optimal noise dispersion and
descriptions. The noise can be impulsive and irregular andlpha bell-curve tail thicknesglg]. This exponential rela-
have infinite variance and infinite higher-order momentstionship corresponds to a similar one for infinite-variance SR
Computer simulations alone cannot decide whether this ursystems that use a signal-to-noise ratio or a cross correlation
countable class of noise densities produces the SR effect fior the system performance measufid]. Regression also
threshold systems. Theoretical techniques can decide the ishows that the SR-maximal mutual information in noisy
sue and we show that the answer is positive: AlImost althreshold neurons depends approximately linearly on the
threshold systems exhibit the SR effect in terms of mutuabell-curve tail thickness for symmetric alpha-stable noise.
information or a bit-based measure of system performance. Figure 1 shows the system-flow diagram of a noisy

The two theorems iri12] show the SR effect in simple threshold neuron system that processes subthreshold signals.
(memorylessthreshold neurons as often found in the litera- Figure 2 shows the first use ¢fight-sided beta noise for
ture of neural networkgl3—-15. We state these two theorems

below (Theorems 1.1 and 2 dwithout proof and derive a signal s Cp outputy
0

corollary and two new related theorems. The first theorem —
(Theorem 1.1 shows that threshold neurons exhibit the SR
effect for all finite-variance noise densities if the system per-
formance measure is Shannon’s mutual information and if
the mean or location parameter falls outside a “forbidden” k|G, 1. System-flow diagram of a noisy threshold neuron. The
interval that one can often pick in advance. A corollary neuron’s signal function has the for¢t) with threshold parameter
shows that this SR effect still occurs for right-sided beta andy, wheres is the input signal and is the input additive noise. We
Weibull noise. Traditional SR research has focused almosissume subthreshold signafss< 6, whereA is the amplitude of the
exclusively on two-sided noise. The second theo(&imeo-  Bernoulli inputs.

noise n
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FIG. 2. (Color onling Stochastic resonance withight-sided foull neise. The noizy signal-foroed treshalkd neuron he

beta noise. The noisy signal-forced threshold neuron has the forfi/eibull noise. The noisy signal-forced threshold neuron has the
(1). The beta nois@, adds to the bipolar input Bernoulli signgl ~ form (1). The Weibull noisen; adds to the bipolar input Bernoulli
The parametrized intervdh, b] of the beta densityl4) hasa=0  Signals. The neuron has thresholt=0.5. The input Bernoulli sig-
andb=10. The neuron has threshafe: 1. The input Bernoulli sig-  hal has amplitude\=0.2 with success probability= ;. Each trial

nal has amplitudé\=0.8 with success probabilitg=3. Each trial ~ Produced 10000 input-output samplés,y;} that estimated the
produced 10 000 input-output samplés,y,} that estimated the probability densities to obtain the mutual information. The graph
probability densities to obtain the mutual information. The graphshows the smoothed input-output mutual information of a threshold
shows the smoothed input-output mutual information of a threshold'€uron as a function of the parametersind 3 of additive white
neuron as a function of the parametersind 8 of additive white Weibull noisen,. The neuron’s mutual information has a nonzero
beta noisen,. The neuron’s mutual information has a nonzero noisenoise (Z)Iptimum oopt>0 Where t?e variance has the foraf,
optimum gop>0 where the variance has the form2=[(b  =(B/@*AT(1+2/8)~{T(1+1/p)}].

—a)%aB)/[(a+B)*(a+p+1)].

SR. The beta density generalizes the uniform density and is

popular in Bayesian statisti¢47] because it allows analysts 1 ifs+n =6

to control the shape of the density with two parameters and Ye=sgris+n=6) = {0 if s+n<6’ @)
scale or translate the finite-length domain. Figure 3 shows
the first use of(right-sided Weibull noise for SR. The
Weibull density generalizes the exponential and Rayleigh . , . . .
densities and has an infinite-length domain. Figure 4 showg/here0.>0_ is the neurons threshold, is the blpglar Input
several symmetrical alpha-stable noise densities whose b ernoulli S|gnal_(W|th art_ntrary success prpbablhtp S.U.Ch
curves have thick tails that produce infinite variance and of! a_t 0< P<1)_W'th amp!lftudeA>'0, and M 1S the additive

ten highly impulsive noise spikes. Figure 5 shows a simulaYVNit€ noise with probability densitp(n). Figure 1 shows the
tion instance of both Theorem 2.1 and the empirical trends iifYStem flow of the threshold system. _ _

Figs. 7 and 8. Infinite-variance Cauchy noise produces the The threshold system uses subthreshold binary signals.
SR effect when plotted against the Shannon mutual informa! & Symbol “0” denotes the input signa+-A and output
tion of the threshold system. The linear regression results i§9n& y=0. The symbol “1” denotes the input signs+A
Table | and Fig. 7 reveal the exponential relationship be2nd output signay=1. We assume subthreshold input sig-
tween the optimal noise dispersion and the alpha bell-curv8@lS:A< 6. Then the conditional probabilitieBy,(y|s) are

tail thickness. The linear dependence of the log-transformed

optimal noise dispersion on the bell-curve thickness becomes

quadratic when the signal amplitude is too small or too close

to the neuron’s threshold. The regression results in Table I PY\S(0|O) =PHs+N < flea (2)

and Fig. 8 show a similar pattern. The linear dependence of

the SR-maximal mutual information on the bell-curve thick-

ness also becomes quadratic when the signal amplitude is too =PAn < 6+A}
small or too close to the neuron’s threshold. G+A
= n)dn 3
Il. THRESHOLD NEURONS AND SHANNON’'S MUTUAL f_m p( ) 3
INFORMATION
We use the standard discrete-time threshold neuron model
[1,2,6,15,16,1B Pyis(1/0) =1 - Py5(0[{0) (4)
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FIG. 4. Samples of standard symmetric alpha-stable probability densities and their realizaji@ensity functions with zero location
(a=0) and unit dispersioliy=1) for «=2,1.8,1.5, and 1. The densities are bell curves that have thicker tailslasreases and thus that
model increasingly impulsive noise asdecreases. The case=2 gives a Gaussian density with variancga unit dispersion The
parameterr=1 gives the Cauchy density with infinite varian¢e) Samples of alpha-stable random variables with zero location and unit
dispersion. The plots show realizations when2, 1.8, 1.5, and 1. Note the scale differences onytlexes. The alpha-stable variabie
becomes more impulsive as the paramaetéalls. The algorithm i[39,4Q generated these realizatiofs). Density functions fow=1.8 with
dispersionsy=0.5, 1, and 2(d) Samples of alpha-stable noiagor «=1.8 with dispersiong/=0.5, 1, and 2.

Pys(0]1) = PAs+n < 6}cp (5) Py(y) = > Pys(y9)P(s). (8)
S
=Pn< - A} Other researchers have derived the conditional probabili-
oA ties PY‘S(y|s) of the threshold system with Gaussian noise
:f p(n)dn, (6) with bipolar inputs[1] and Gaussian input8]. We neither
—o» restrict the noise density to be Gaussian nor require that the

density have finite variance even if the density has a bell-
curve shape.
Pyis(1]1) = 1 = Py5(0]1) (7) We use Shannon mutual informati¢h9] to measure the
noise enhancement or “stochastic resonan(@&R) effect
[1,3,8,20,21 The discrete Shannon mutual information of
and the marginal density is the inputS and outputy is the difference between the output
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unconditional entropyH(Y) and the output conditional en- i Psy(s,y)
tropy H(Y|X): (Sv)=2 Zy Ps¥sY)Iogzp Jpry)
1(SY)=H(Y) - H(Y[9) 9)

Then Jensen’s inequality implies thHiS,Y)=0. Random
variablesS andY are statistically independent if and only if

=— > Py(y)log,Py(y) 1(S,Y)=0. Hencel(S,Y) >0 implies some degree of depen-
y dence. The proofs ifil2] and the Appendix use this fact.
+ Psy(s,y)log,P 10
Eszy 5¥(SY)10G2Py syl (10 lll. SR FOR THRESHOLD SYSTEMS WITH
FINITE-VARIANCE NOISE
=— > Py(y)log,Py(y) Almost all finite-variance noise densities produce the SR
y effect in threshold neurons with subthreshold signals. This
holds for all probability density functions defined on a two-
+Es P(S)Ey P(yls)logzP(yls) (11) symbol alphabet. The proof of Theorem 1.1[it?] shows

that if I1(S,Y)>0 then eventually the mutual information
Pey(s.y) I(S,Y) tends toward zero as the noise variance tends toward
=> PSY(s,y)IogZS—'y. (12)  zero. So the mutual informatiariS, Y) mustincreaseas the
sy P<(s)Py(y) noise variance increases from zero. The only limiting as-
So the mutual information is the expectation of the random?umptlon ,',S .that the noise .meaE{n] does not lie in the
variable log{[Psy(s,y)]/[Ps(s)Py(y)1}: forbidden” signal-threshold intervalg—A, 6+A).
Theorem 1.1Suppose that the threshold signal systéim
Psy(S,Y) has noise probability density functigtn) and that the input
2b(9Pyy) | (13)  signalSis subthresholdA< 6). Suppose that there is some
statistical dependence between input random variSkadad
Here P4(s) is the probability density of the inp8, Py(y) is  output random variabl¥ [so thatl(S,Y)>0]. Suppose that
the probability density of the outpf, Pys(y|s) is the con-  the noise meaiE[n] does not lie in the signal-threshold in-
ditional density of the outputy given the inputS, and terval (§—A,0+A) if p(n) has finite variance. Then the
Psy(s,y) is the joint density of the inpuB and the outpulY.  threshold systenil) exhibits the nonmonotone SR effect in
Simple bipolar histograms of samples can estimate thesge sense thd(S,Y)—0 aso—0.
densities in practice. Corollary 1.1 The threshold neuro(l) exhibits stochas-
Mutual information also measures the pseudodistance beic resonance for the additive beta and Weibull noise densi-
tween the joint probability densitis\(s,y) and the product ties under the hypotheses of Theorem 1.1.
densityP<(s)Py(y). This holds for the Kullback19] pseudo- The generalized beta probability density function has the
distance measure form

1(SY)= E[Iog

_ a-1 _ B-1
1 F(a+,8)(n a) (b n) facneb

p(n)=yb-al(x)'(B)\b-a b-a (14
0 otherwise.
[
Parametersr and 8 are positive shape constants, parameters 5 (b-a)?apB
a andb are constantse<a<b<o, andI is the gamma T (ot pat fr 1) (17
function

So the beta density is right-sided fax 0. We useca=0 and
b=10 and so defined the beta density in the intef@all0]
for the SR simulation instance in Fig. 2. The algorithm in
[22] generated the beta noise. Bayesian statisticians often use
a beta density to encode prior information about a parameter
(such as a binomial success paramebeover a fixed-length
interval[23]. The beta density can also model the semblance
a (16) or the ratio of stacked energy to total energy across a signal
a+p’ array[24], fluctuations of the radar-scattering cross sections

F(x)=f ylevdy, x>0. (15)
0

The mean and variance of the beta density are

m,=a+(b-a)
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FIG. 5. Stochastic resonance with highly impulsigefinite- FIG. 6. No SR in the “forbidden” intervalper Theorems 1.2

variancg alpha-stable noise. The graphs show the smoothed inputand 2.3—mutual information versus alpha-stable noise dispersion
output mutual information of a threshold system as a function of theyhen the noise mearlocation lies in the “forbidden” signal-
dispersion of additive white alpha-stable noise with @=1  threshold intervala e (§—-A, 6+A). The graphs show the smoothed
(Cauchy noisgin (a) and a=1.5 in(b). The vertical dashed lines input-output mutual information of 100 trials of a threshold system
show the absolute deviation between the smallest and largest outlis a function of the dispersion of additive white alpha-stable noise
ers in each sample average of 100 outcomes. The system hasnawith «=2 (Gaussianin (a) and «=1 (Cauchy noisgin (b). The
nonzero noise optimum a4~ 0.285 fora=1 andyy,~0.129 for  system is optimal whe— 0 and thusioes noshow the SR effect:
@=1.5 and thus shows the SR effect. The noisy signal-forcedrhe mutual informationl(S,Y) is maximum when it equals the
threshold system has the fort). The alpha-stable noisg adds to  input entropyH(S). The noisy signal-forced threshold system has
the bipolar input Bernoulli signa;. The system has thresholl  the form(1). The alpha-stable noisg has locatiora=0.4 and adds
=0.5. The input Bernoulli signal has amplituéle=0.3 with success  to the bipolar input Bernoulli signad. The system has threshold
probability p=3. Each trial produced 10 000 input-output samples §=0.5. The input Bernoulli signal has amplitude=0.4 with suc-
{s;,yi} that estimated the probability densities to obtain the mutuakess probabilitypz%. Each trial produced 10000 input-output

information. Note that decreasing the tail-thickness parameter sampleds;,y;} that estimated the probability densities to obtain the
increases the optimal noise dispersiggy, as in Fig. 7 and de- mutual information.

creases the SR-maximal mutual informatigR,(S,Y) as in Fig. 8.

anf-leg B if n=0

of targets[25], the self-similar process of video traffj26], p(n) = 0 otherwise (18)
and the variation of the narrowband vector channels or spa-
tial signature variations due to movemggat]. for positive shape parametessand 8. The mean and vari-

The Weibull probability density function has the form  ance of the Weibull density are
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m=(
1+—
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Figure 3 shows simulation realizations of this corollary for
the Weibull noise densityMATLAB 6.5 [28] generated the

Weibull noise. Weibull[29] first proposed this parametric
probability density function to model the fracture of materi-

B

(¢4

(19

Jifa-2)
ARU I

B

o

2 _
On

als under repetitive stress. This density has become a sta

dard model of multipart system reliabiliy80]. It can also

effectively model signals and noise in many data-rich sys

tems such as radar cluttg8l] and confocal laser scanning
microscopy[32].

We next state a result that shows that we cannot in general
omit the threshold-interval condition in the hypothesis of

Theorem 1.1. Noise does not help a threshittiat already
lies betweerd—A and 6+A.

Theorem 1.2Suppose that the threshold signal systéimn
has noise probability density functigrin) and that the input
signalSis subthresholdA < 6#). Suppose that the noise mean
E[n] lies in the signal-threshold intervad—A, 6+A) if p(n)
has finite variance. Then the threshold systdmdoes not
exhibit the nonmonotone SR effect in the sense t@&LY) is
maximum aso— 0:

I(SY)=H(Y)=H(S as o—0.
The Appendix gives the proof.

(21)

IV. SR FOR THRESHOLD SYSTEMS WITH INFINITE-
VARIANCE NOISE

We now proceed to the more genefahd more realistic

PHYSICAL REVIEW E 70, 031911(2004

Models with <2 can accurately describe impulsive noise
in telephone lines, underwater acoustics, low-frequency at-
mospheric signals, fluctuations in gravitational fields and fi-
nancial prices, and many other procesg23g. Note that
the best choice of is anempirical question for bell-curve
phenomena. Bell-curve behavior alone does not justify the
(extreme assumption of the Gaussian bell curve. Figure 4
shows realizations of four symmetric alpha-stable noise ran-
dom variables.

Theorem 2.1 applies tany alpha-stable noise model. The
H_ensity need not be symmetric. A general alpha-stable prob-
ability density function f has characteristic functionp

[36,37,41,42

o(w) = exp{iaw - 7|w|“(1 +iB Sgl’(w)tan%)}
fora#1 (22)
and

o(w) = expgliaw — y|o|[1 - 28 In|o|sgrw)/7]} for a=1,

(23
where
1 fw>0
sgnw)=1 0 if =0 (24)
-1 ifw<O

andi=\-1, 0<a<2, -1=<pB=<1, andy>0. The parameter

a is the characteristic exponent. Again the variance of an
alpha-stable density does not existit 2. The location pa-
rametera is the “mean” of the density whea>1. 8 is a
skewness parameter. The density is symmetric abaovuten
B=0. The theorem below still holds even whgr# 0. The
dispersion parametey acts like a variance because it con-

case where infinite-variance noise interferes with the threshtrols the width of a symmetric alpha-stable bell curve. There
old system. The SR effect also occurs in other systems witlre no known closed forms of thestable densities for most

impulsive infinite-variance nois¢16,33. We can model
many types of impulsive noise wittymmetricalpha-stable
bell-curve probability density functions with parametein

the characteristic functiop(w)=exp-y|w|*}. Here y is the
dispersionparamete34—37.

The parametetr controls tail thickness and lies in<Oa
<2. Noise grows more impulsive as falls and the bell-
curve tails grow thicker. Théthin-tailed Gaussian density
results whena=2 or whene(w)=expg-yw?. So the stan-

a’s. Numerical integration ofp produced the simulation re-
sults in Fig. 4.

The proof of Theorem 2.1 ifiL2] is simpler than the proof
in the finite-variance case because all stable noise densities
have a characteristic function with the exponential form in
Egs. (22) and (23). So zero noise dispersion givesas a
simple complex exponential and hence gives the correspond-
ing density as a delta spike that can fall outside the interval
(6-A, 0+A).

dard Gaussian random variable has zero mean and variance Theorem 2.1Supposd(S,Y)>0 and the threshold sys-

02=2 (wheny=1). The parametew gives the thicker-tailed
Cauchy bell curve whea=1 or ¢(w)=exp—|w|} for a zero
location (a=0) and unit dispersior{y=1) Cauchy random
variable. The moments of stable distributions witk 2 are

tem (1) uses alpha-stable noise with location parameter
ae (0-A,0+A). Then the systeril) exhibits the nonmono-
tone SR effect if the input signal is subthreshold.

Figure 5 gives a typical example of the SR effect for

finite only up to orderk for k<a. The Gaussian density highly impulsive noise with infinite variance. The alpha-
alone has finite variance and higher moments. Alpha-stablgetable noises have=1 (Cauchy and «=1.5. So frequent
random variables characterize the class of normalized sun@&nd violent noise spikes interfere with the signal. Figure 5
of independent random variables that converge in distribualso illustrates the empirical trends in Figs. 7 and 8: A falling
tion to a random variabl¢34] as in the famous Gaussian tail-thickness parametest produces an increasing optimal
special case called the “central limit theorem.” noise dispersiony,, but a decreasing SR-maximal mutual
Alpha-stable models tend to work well when the noise orinformation| (S, Y). We next state a new sufficient condi-
signal data contain “outliers"— and all do to some degreetion for SR not to occur in an impulsive threshold system.

031911-6



ROBUST STOCHASTIC RESONANCE FOR SIMPLE PHYSICAL REVIEW E 70, 031911(2004)

TABLE I. Linear regression estimates of the SR-optimal log
dispersionygy as a function of the bell-curve tail-thickness param-
etera from a symmetric alpha-stable noise density. The parameters
Bo and B; relate logyyep and a through a linear relationship:
[0G10Yopt @) =Bo+ B1r. The coefficient of determinatioq2 shows
how well the linear model fits the log-transformed data. The last
column shows the coefficient of determinatigpfor the quadratic
model |0g0)/0pt(a):ﬂo+ﬁla+ﬂza2. All observed significance lev-
els orp-values were less than 10

Linear model
Signal amplitude  Regression coefficients Quadratic model

Logarithm of optimal dispersion: log yopt(a)

A Bo B rf ra
0.025 0.0701 -0.5944 0.9003 0.9444
0.050 0.1002 -0.6087 0.9321 0.9723 _
0.075 0.1124 -0.6192 0.9490 0.9842 %
0.100 0.1180 -0.6261 0.9558 0.9888 g,',o
0.125 0.1090 -0.6228 0.9594 0.9910 "
0.150 0.1078 -0.6251 0.9679 0.9921 %
0.175 0.1026 -0.6273 0.9672 0.9933 ;3,
0.200 0.0915 -0.6214 0.9699 0.9942 %
0.225 0.0810 -0.6161 0.9737 0.9950 %
0.250 0.0694 -0.6172 0.9781 0.9959 .g
0.275 0.0595 -0.6149 0.9826 0.9964 E
0.300 0.0439 -0.6148 0.9869 0.9961 a
0.325 0.0290 -0.6184 0.9903 0.9962 S
0.350 0.0116 -0.6211 0.9935 0.9961 0 oin alpha-stable distribution 2
0.375 -0.0134 -0.6215 0.9957 0.9960
0.400 ~0.0313 -0.6367 0.9947 0.9951 FIG. 7. Exponential law for optimal noise dispersigg, as a
0.425 -0.0705 -0.6432 0.9903 0.9950 function of bell-curve thickness parameter for the mutual-
0.450 -0.1107 -0.6688 0.9757 0.9944 information performance measure and for different signal ampli-
0.475 -0.1837 -0.7217 0.9408 0.9911 tudesA. The optimal noise dispersiop,, depends on the parameter
0.490 -0.2805 -0.8053 0.8987 0.9863 a through the exponential relatiop,(a) = 10°0*A1* for parameters

Bo and By [or yopl )= 1050+ Bre+Boa’ for g quadratic fit to the data

Table | shows the estimated parametéfﬁand ,?31 for 20 input
Theorem 2.2Suppose that the threshold signal systéin  Bernoulli signal amplitude#. The exponential trend’s exponent is

has subthreshold input signal and use alpha-stable noise witinear for most amplitudes but becomes quadratic for very small

location parametea e (6—A, 8+A). Then the threshold sys- amplitudes and for amplitudes close to the thresm;t%. All ob-

tem (1) does not exhibit the nonmonotone SR effd¢8,Y) served significance levels prvalues were less than T

is maximum asy— O:

B B p-values were less than 10 The p-values measure the cred-
I(SY)=H(Y)=H(S asy—0. (29 ibility of the null hypothesis that the regression lines have

The Appendix gives the proof. Figure 6 shows the noiseZero slope or other coefficients. The exponential trend’s ex-

mutual information profile of the subthreshold signal systemponent is linear for most amplitudes but becomes quadratic
with noise location (mea[) in the “forbidden” Signa|- for very small amplltudes and for amplltudeS close to the

threshold interval. thresholdd=3 [or ’yopt(a):1060+51“+ﬁz"2 for a quadratic fit to
Statistical regression confirmed an exponential relationthe datd Figure 7 shows 6 of the 20 log-linear plots.

ship between the optimal noise dispersigg; and the bell- We also found an approximate linear relationship

curve tail-thickness parameter: you(a)=10%"%1% for pa-  1,,(S,Y; @) =B+ B1a for the SR-maximal mutual informa-

rametersB, and B; that depend on the signal amplitude  tion |,,.,(S,Y) as a function of the tail-thickness parameter
Then_ the log-transformation of the optimal dispersion givesrgpie 11 shows the estimated parametébsand 231 and the
the linear model logyyopi(@)=Bo+ By Table | shows the  coefficient of determinatiorg for 20 signal amplitudes in the
estimated parametef3y and B, and the coefficient of deter- threshold neuron. All observed significance levels or
mination r|2 for 20 signal amplitudes in the threshold neuron p-values were less than 10 There is a clear linear trend for
using spss software. All observed significance levels or most amplitudesA. The trend becomes quadratic for very

031911-7
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TABLE II. Linear regression of the SR-maximal mutual infor- 0.1
mation | ,o{S,Y) as a function of the bell-curve tail-thickness pa-
rametera from a symmetric alpha-stable noise density. The param-
eterspBy and B, relatel ,.(S,Y) and« through a linear relationship:
Imax(S,Y; @)=Bo+ Bra. The coefficient of determinatior]2 shows
how well the linear model fits the data. The last column shows the
coefficient of determinationr? for the quadratic model
ImaxdS,Y; @) = Bo+ Bra+ Boa. All observed significance levels or
p-values were less than 10

0.08r

0.06

0.04f

Maximal mutual information 1(S,Y) bits

0.02f
Linear model
Signal amplitude  Regression coefficients Quadratic model or-
A Bo B rf rq -0.02;
0.025 -0.0001 0.0006 0.9312 0.9907
0.050 -0.0008 0.0022 0.9370 0.9972 0.35
0.075 —-0.0018 0.0049 0.9401 0.9985 % oal
0.100 —0.0031 0.0086 0.9440 0.9990 <
0.125 —0.0048 0.0134 0.9477 0.9993 2 0.251
0.150 —-0.0068 0.0190 0.9521 0.9995 §_ 0.0k g
0.175 —0.0090 0.0256 0.9558 0.9997 E ¢
0.200 -0.0113 0.0329 0.9612 0.9998 g 015
0.225 —-0.0138 0.0411 0.9658 0.9998 ‘_5 0.1}
0.250 —-0.0161 0.0500 0.9715 0.9997 g
0.275 -0.0185 0.0596 0.9764 0.9995 T 0o
0.300 —-0.0207 0.0698 0.9816 0.9993 é Or-
0.325 -0.0224 0.0807 0.9866 0.9990 ~0.05
0.350 -0.0236 0.0920 0.9913 0.9987 0 < in alpha-stable distribution’ 2
0.375 -0.0240 0.1039 0.9951 0.9984
0.400 -0.0229 0.1161 0.9976 0.9981 FIG. 8. Linear regression for maximal mutual information
0.425 ~0.0196 0.1286 0.9972 0.9977 :jmf?x(S,Yt) as aI functil_cindo;\be_:_lt-}curve t_hicklnesst p?rgr:emerfct)_r
ifferent signal amplitudesA. The maximal mutual information
0.450 ~0.0120 0.1408 0.9905 0.9975 ImaxS,Y) dgpends cE)n the parameterthrough the linear relation-
0.475 0.0058 0.1513 0.9655 0.9973 Ship ImadS, Y; @) = Bo+ By for parametersd, and By [0r | el @)
0.490 0.0336 0.1527 0.9145 0.9959 =B+ Bia+ Bya? for a quadratic fit to the dajaTable 1l shows the

estimated parametey, and 231 for 20 input Bernoulli signal am-

. . plitudes A. The linear trend is strong for most amplitudesThe
small amplitudes and for amplitudes close to the thresholgrend becomes quadratic for very small amplitudes and for ampli-
0:%. Figure 8 shows 6 of the 20 linear plots. tudes close to the threshofi 5. All observed significance levels or

p-values were less than 10
V. CONCLUSIONS

. . . APPENDIX: PROOFS OF THEOREMS 1.2 AND 2.2
Both theory and detailed simulations show that almost all

noise types produce stochastic resonance in threshold sys- The two proofs below use the same idea as do the proofs
tems that use subthreshold signals. These results help expldior Theorems 1.1 and 2.112]. Assume G<Pgs)<1 to

the widespread occurrence of the SR effect in mechanicalvoid triviality when Pgs)=0 or 1. We show thaH(Y)

and biological threshold systeni43—49. The broad gener- —H(S) and H(Y|S —0 as o0—0 or y—0. So I(S,Y)

ality of the results suggests that SR should occur in any-H(S) as ¢—0 or y—0 and is maximum sincé(S,Y)
nonlinear system whose input-output structure approximatesH(Y)_H(y|s) and 1(S,Y)<H(S) by the data processing

a threshold system as in the many models of continuougequality: 1(S,S) =1(S,g9(9)=I(S,Y) for a Markov chainS

neurons[50-53. The infinite-variance theoretical and simu- _, 5 .y [19]. The boundary casé(S,S)=H(S) implies
lation results further imply that such widespread SR eﬁects,(s Y)<H(S).

should be robust against violent noise impulses.
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and Thailand Research Fund Grant No. RSA4680001 supy— 0. Let the mean of the noise Ibe=E[n] and the variance
ported this research. be o?=E[(n-m)?]. Thenme (6—A, 6+A) by hypothesis.
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ROBUST STOCHASTIC RESONANCE FOR SIMPLE

Consider first Pys(0]0). Pick e=3d(g+A,m)=5(6+A
-m>0. So f+A-eg=0+A-c+m-m=m+(0+A-m)-¢

=m+2e—e=m+e. Then

0+A
PY|S(O|0) = f p(n)dn

O+A-¢
= J p(n)dn

=J ) p(n)dn

=1 —J p(n)dn
mte

(A1)

(A2)

(A3)

(A4)

=1-P{n=m+¢e}=1-P{n—-m= ¢} (A5)

=1-Pfn-m = ¢}
=1l-—
82

—1 asoc—0.

So Pyls(0|0) =1.

(A6)

by Chebyshev s inequalitfA7)

(A8)

Similarly for Pyg(1[1): Pick s:%d(a—A,m):%(m—a

+A)>0.
=m-2¢+e=m-¢. Then

Pys(1]1) = f p(n)dn
A

;j p(n)dn
6-A+e

),
=1 —f p(n)dn

=1-Pin<m-¢g}=1-P{n-m=<-—¢}

p(n)dn

=1-Pfln-m = ¢}
=l-—
2

by Chebyshev’s inequality

—1 as o—0.

So Pyls(1| 1) =1.

S0 0-A+e=0-A+s+m-m=m+(6-A-m)+e

(A9)

(A10)

(A11)

(A12)

(A13)

(A14)

(A15)

(A16)

PHYSICAL REVIEW E 70, 031911(2004)

Alpha-stable noise case (Theorem 2.2)

The characteristic functioro(w) of alpha-stable noise
density p(n) has the exponential for22) and (23). This
reduces to a simple complex exponential in the zero-
dispersion limit:

lim ¢(w) = exgiaw} (A17)

'y~>0
for all characteristic exponents, skewnesseg@, and loca-
tions a. So Fourier transformation gives the corresponding
density function in the limiting casey—0) as a translated
delta functions:

lim p(n)=48n-a). (A18)
y—0
Thenae (6—-A, 6+A) gives
6+A
Py(0[0) = f p(n)dn (A19)

6+A
—>f sn—-aydn=1 asy—0. (A20)

Similarly

e’}

p(nydn (A21)

0-A

Pys(1]1) =

o0

— sn-ajdn=1 as y—0.
6-A

(A22)

The two conditional probabilities for both the finite-
variance and infinite-variance cases likewise imply that
Py;s(0|1)=Py;5(1|0)=0 asoc— 0 or y— 0. These four prob-
abilities further imply that

H(Y|S) = -2 X Psy(s.y)log, Pys(yls)
sy

(A23)

=2 P«(9)> Pyislyls)log, Pys(yls) (A24)
s y

=0, (A25)

where we use the fagt’Hopital) that 0 log0=0. The un-
conditional entropyH(Y) becomes

H(Y) = - 2 Py(y)log, Py(y) (A26)
y

=- 2, Pg(s)log, P«(s) (A27)

=H(9 (A28)

because
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Py(y) = X Pys(y[S)Ps(s) (A29) =[Pyjs(y|0) = Pys(y|D)IP<(0) + Pyg(y|1) (A32)
S
=[Pys(y|1) = Pyjs(y|0)]Pg(1) + Py(y[0)  (A33)
=Pyjs(y|0)Pg(0) + Py(y|1)Ps(1) (A30)
_JPg1) ify=1 A34
=PyY0)PL0) + Pygy|D[1-P4O)]  (A3D) “\P0) if y=o. (A34)
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