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Simulation and theoretical results show that memoryless threshold neurons benefit from small amounts of
almost all types of additive noise and so produce the stochastic-resonance or SR effect. Input-output mutual
information measures the performance of such threshold systems that use subthreshold signals. The SR result
holds for all possible noise probability density functions with finite variance. The only constraint is that the
noise mean must fall outside a “forbidden” threshold-related interval that the user can control—a new theorem
shows that this condition is also necessary. A corollary and simulations show that the SR effect occurs for
right-sided beta and Weibull noise as well. These SR results further hold for the entire uncountably infinite
class of alpha-stable probability density functions. Alpha-stable noise densities have infinite variance and
infinite higher-order moments and often model impulsive noise environments. The stable noise densities
include the special case of symmetric bell-curve densities with thick tails such as the Cauchy probability
density. The SR result for alpha-stable noise densities shows that the SR effect in threshold and thresholdlike
systems is robust against occasional or even frequent violent fluctuations in noise. Regression analysis reveals
both an exponential relationship for the optimal noise dispersion as a function of the alpha bell-curve tail
thickness and an approximate linear relationship for the SR-maximal mutual information as a function of the
alpha bell-curve tail thickness.
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I. ALMOST ALL THRESHOLD SYSTEMS EXHIBIT
STOCHASTIC RESONANCE

Several researchers have found that threshold neurons and
other threshold systems exhibit stochastic resonance[1–8]:
Small amounts of noise improve the threshold neuron’s
input-output correlation measure[9,10] or mutual informa-
tion [1,8,11]. All of these simulations and analyses assume a
noise probability density function that has finite variance.
Most further assume that the noise is simply Gaussian or
uniform. Yet the statistics of real-world noise can differ sub-
stantially from these simple and finite-variance probability
descriptions. The noise can be impulsive and irregular and
have infinite variance and infinite higher-order moments.
Computer simulations alone cannot decide whether this un-
countable class of noise densities produces the SR effect in
threshold systems. Theoretical techniques can decide the is-
sue and we show that the answer is positive: Almost all
threshold systems exhibit the SR effect in terms of mutual
information or a bit-based measure of system performance.

The two theorems in[12] show the SR effect in simple
(memoryless) threshold neurons as often found in the litera-
ture of neural networks[13–15]. We state these two theorems
below (Theorems 1.1 and 2.1) without proof and derive a
corollary and two new related theorems. The first theorem
(Theorem 1.1) shows that threshold neurons exhibit the SR
effect for all finite-variance noise densities if the system per-
formance measure is Shannon’s mutual information and if
the mean or location parameter falls outside a “forbidden”
interval that one can often pick in advance. A corollary
shows that this SR effect still occurs for right-sided beta and
Weibull noise. Traditional SR research has focused almost
exclusively on two-sided noise. The second theorem(Theo-

rem 2.1) shows that this also holds for all infinite-variance
densities that belong to the large class of stable distributions.
Both theorems assume that all signals are subthreshold sig-
nals. The two new theorems(Theorems 1.2 and 2.2) show
that there is no SR effect if the mean or location parameters
fall within the forbidden threshold interval. Figure 4 shows a
simulation instance of this predicted forbidden-interval effect
for Gaussian and Cauchy noise.

The paper then presents several regression analyses of
simulation experiments that confirm and extend the exponen-
tial relationship between the optimal noise dispersion and
alpha bell-curve tail thickness[16]. This exponential rela-
tionship corresponds to a similar one for infinite-variance SR
systems that use a signal-to-noise ratio or a cross correlation
for the system performance measure[16]. Regression also
shows that the SR-maximal mutual information in noisy
threshold neurons depends approximately linearly on the
bell-curve tail thickness for symmetric alpha-stable noise.

Figure 1 shows the system-flow diagram of a noisy
threshold neuron system that processes subthreshold signals.
Figure 2 shows the first use of(right-sided) beta noise for

FIG. 1. System-flow diagram of a noisy threshold neuron. The
neuron’s signal function has the form(1) with threshold parameter
u, wheres is the input signal andn is the input additive noise. We
assume subthreshold signals:A,u, whereA is the amplitude of the
Bernoulli inputs.
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SR. The beta density generalizes the uniform density and is
popular in Bayesian statistics[17] because it allows analysts
to control the shape of the density with two parameters and
scale or translate the finite-length domain. Figure 3 shows
the first use of(right-sided) Weibull noise for SR. The
Weibull density generalizes the exponential and Rayleigh
densities and has an infinite-length domain. Figure 4 shows
several symmetrical alpha-stable noise densities whose bell
curves have thick tails that produce infinite variance and of-
ten highly impulsive noise spikes. Figure 5 shows a simula-
tion instance of both Theorem 2.1 and the empirical trends in
Figs. 7 and 8. Infinite-variance Cauchy noise produces the
SR effect when plotted against the Shannon mutual informa-
tion of the threshold system. The linear regression results in
Table I and Fig. 7 reveal the exponential relationship be-
tween the optimal noise dispersion and the alpha bell-curve
tail thickness. The linear dependence of the log-transformed
optimal noise dispersion on the bell-curve thickness becomes
quadratic when the signal amplitude is too small or too close
to the neuron’s threshold. The regression results in Table II
and Fig. 8 show a similar pattern. The linear dependence of
the SR-maximal mutual information on the bell-curve thick-
ness also becomes quadratic when the signal amplitude is too
small or too close to the neuron’s threshold.

II. THRESHOLD NEURONS AND SHANNON’S MUTUAL
INFORMATION

We use the standard discrete-time threshold neuron model
[1,2,6,15,16,18]

yt = sgnsst + nt − ud = H1 if st + nt ù u

0 if st + nt , u
, s1d

whereu.0 is the neuron’s threshold,st is the bipolar input
Bernoulli signal (with arbitrary success probabilityp such
that 0,p,1) with amplitudeA.0, andnt is the additive
white noise with probability densitypsnd. Figure 1 shows the
system flow of the threshold system.

The threshold system uses subthreshold binary signals.
The symbol “0” denotes the input signals=−A and output
signal y=0. The symbol “1” denotes the input signals=A
and output signaly=1. We assume subthreshold input sig-
nals:A,u. Then the conditional probabilitiesPYuSsy usd are

PYuSs0u0d = Prhs+ n , ujs=−A s2d

=Prhn , u + Aj

=E
−`

u+A

psnddn s3d

PYuSs1u0d = 1 − PYuSs0u0d s4d

FIG. 2. (Color online) Stochastic resonance with(right-sided)
beta noise. The noisy signal-forced threshold neuron has the form
(1). The beta noisent adds to the bipolar input Bernoulli signalst.
The parametrized interval[a, b] of the beta density(14) hasa=0
andb=10. The neuron has thresholdu=1. The input Bernoulli sig-
nal has amplitudeA=0.8 with success probabilityp= 1

2. Each trial
produced 10 000 input-output sampleshst ,ytj that estimated the
probability densities to obtain the mutual information. The graph
shows the smoothed input-output mutual information of a threshold
neuron as a function of the parametersa and b of additive white
beta noisent. The neuron’s mutual information has a nonzero noise
optimum sopt.0 where the variance has the formsn

2=fsb
−ad2abg / fsa+bd2sa+b+1dg.

FIG. 3. (Color online) Stochastic resonance with(right-sided)
Weibull noise. The noisy signal-forced threshold neuron has the
form (1). The Weibull noisent adds to the bipolar input Bernoulli
signalst. The neuron has thresholdu=0.5. The input Bernoulli sig-
nal has amplitudeA=0.2 with success probabilityp= 1

2. Each trial
produced 10 000 input-output sampleshst ,ytj that estimated the
probability densities to obtain the mutual information. The graph
shows the smoothed input-output mutual information of a threshold
neuron as a function of the parametersa and b of additive white
Weibull noisent. The neuron’s mutual information has a nonzero
noise optimum sopt.0 where the variance has the formsn

2

=sb /ad2/bfGs1+2/bd−hGs1+1/bdj2g.
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PYuSs0u1d = Prhs+ n , ujs=A s5d

=Prhn , u − Aj

=E
−`

u−A

psnddn, s6d

PYuSs1u1d = 1 − PYuSs0u1d s7d

and the marginal density is

PYsyd = o
s

PYuSsyusdPSssd. s8d

Other researchers have derived the conditional probabili-
ties PYuSsy usd of the threshold system with Gaussian noise
with bipolar inputs[1] and Gaussian inputs[8]. We neither
restrict the noise density to be Gaussian nor require that the
density have finite variance even if the density has a bell-
curve shape.

We use Shannon mutual information[19] to measure the
noise enhancement or “stochastic resonance”(SR) effect
[1,3,8,20,21]. The discrete Shannon mutual information of
the inputSand outputY is the difference between the output

FIG. 4. Samples of standard symmetric alpha-stable probability densities and their realizations.(a) Density functions with zero location
sa=0d and unit dispersionsg=1d for a=2,1.8,1.5, and 1. The densities are bell curves that have thicker tails asa decreases and thus that
model increasingly impulsive noise asa decreases. The casea=2 gives a Gaussian density with variance 2(or unit dispersion). The
parametera=1 gives the Cauchy density with infinite variance.(b) Samples of alpha-stable random variables with zero location and unit
dispersion. The plots show realizations whena=2, 1.8, 1.5, and 1. Note the scale differences on they axes. The alpha-stable variablen
becomes more impulsive as the parametera falls. The algorithm in[39,40] generated these realizations.(c) Density functions fora=1.8 with
dispersionsg=0.5, 1, and 2.(d) Samples of alpha-stable noisen for a=1.8 with dispersionsg=0.5, 1, and 2.
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unconditional entropyHsYd and the output conditional en-
tropy HsYuXd:

IsS,Yd = HsYd − HsYuSd s9d

=− o
y

PYsydlog2PYsyd

+ o
s
o

y

PSYss,ydlog2PYuSsyusd s10d

=− o
y

PYsydlog2PYsyd

+ o
s

Pssdo
y

Psyusdlog2Psyusd s11d

=o
s,y

PSYss,ydlog2
PSYss,yd

PSssdPYsyd
. s12d

So the mutual information is the expectation of the random
variable log2hfPSYss,ydg / fPSssdPYsydgj:

IsS,Yd = EFlog2
PSYss,yd

PSssdPYsydG . s13d

HerePSssd is the probability density of the inputS, PYsyd is
the probability density of the outputY, PYuSsy usd is the con-
ditional density of the outputY given the inputS, and
PSYss,yd is the joint density of the inputS and the outputY.
Simple bipolar histograms of samples can estimate these
densities in practice.

Mutual information also measures the pseudodistance be-
tween the joint probability densityPSYss,yd and the product
densityPSssdPYsyd. This holds for the Kullback[19] pseudo-
distance measure

IsS,Yd = o
s
o

y

PSYss,ydlog2
PSYss,yd

PSssdPYsyd
.

Then Jensen’s inequality implies thatIsS,Ydù0. Random
variablesS andY are statistically independent if and only if
IsS,Yd=0. HenceIsS,Yd.0 implies some degree of depen-
dence. The proofs in[12] and the Appendix use this fact.

III. SR FOR THRESHOLD SYSTEMS WITH
FINITE-VARIANCE NOISE

Almost all finite-variance noise densities produce the SR
effect in threshold neurons with subthreshold signals. This
holds for all probability density functions defined on a two-
symbol alphabet. The proof of Theorem 1.1 in[12] shows
that if IsS,Yd.0 then eventually the mutual information
IsS,Yd tends toward zero as the noise variance tends toward
zero. So the mutual informationIsS,Yd must increaseas the
noise variance increases from zero. The only limiting as-
sumption is that the noise meanEfng does not lie in the
“forbidden” signal-threshold intervalsu−A,u+Ad.

Theorem 1.1. Suppose that the threshold signal system(1)
has noise probability density functionpsnd and that the input
signalS is subthresholdsA,ud. Suppose that there is some
statistical dependence between input random variableS and
output random variableY [so thatIsS,Yd.0]. Suppose that
the noise meanEfng does not lie in the signal-threshold in-
terval su−A,u+Ad if psnd has finite variance. Then the
threshold system(1) exhibits the nonmonotone SR effect in
the sense thatIsS,Yd→0 ass→0.

Corollary 1.1. The threshold neuron(1) exhibits stochas-
tic resonance for the additive beta and Weibull noise densi-
ties under the hypotheses of Theorem 1.1.

The generalized beta probability density function has the
form

psnd = 5 1

b − a

Gsa + bd
GsadGsbdSn − a

b − a
Da−1Sb − n

b − a
Db−1

if a ø n ø b

0 otherwise.

s14d

Parametersa andb are positive shape constants, parameters
a and b are constants −̀,a,b,`, and G is the gamma
function

Gsxd =E
0

`

yx−1eydy, x . 0. s15d

The mean and variance of the beta density are

mn = a + sb − ad
a

a + b
, s16d

sn
2 =

sb − ad2ab

sa + bd2sa + b + 1d
. s17d

So the beta density is right-sided foraù0. We useda=0 and
b=10 and so defined the beta density in the intervalf0,10g
for the SR simulation instance in Fig. 2. The algorithm in
[22] generated the beta noise. Bayesian statisticians often use
a beta density to encode prior information about a parameter
(such as a binomial success parameterp) over a fixed-length
interval [23]. The beta density can also model the semblance
or the ratio of stacked energy to total energy across a signal
array [24], fluctuations of the radar-scattering cross sections
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of targets[25], the self-similar process of video traffic[26],
and the variation of the narrowband vector channels or spa-
tial signature variations due to movement[27].

The Weibull probability density function has the form

psnd =Hanb−1e−anb/b if n ù 0

0 otherwise
s18d

for positive shape parametersa and b. The mean and vari-
ance of the Weibull density are

FIG. 5. Stochastic resonance with highly impulsive(infinite-
variance) alpha-stable noise. The graphs show the smoothed input-
output mutual information of a threshold system as a function of the
dispersion of additive white alpha-stable noisent with a=1
(Cauchy noise) in (a) and a=1.5 in (b). The vertical dashed lines
show the absolute deviation between the smallest and largest outli-
ers in each sample average of 100 outcomes. The system has a
nonzero noise optimum atgopt<0.285 fora=1 andgopt<0.129 for
a=1.5 and thus shows the SR effect. The noisy signal-forced
threshold system has the form(1). The alpha-stable noisent adds to
the bipolar input Bernoulli signalst. The system has thresholdu
=0.5. The input Bernoulli signal has amplitudeA=0.3 with success
probability p= 1

2. Each trial produced 10 000 input-output samples
hst ,ytj that estimated the probability densities to obtain the mutual
information. Note that decreasing the tail-thickness parametera
increases the optimal noise dispersiongopt as in Fig. 7 and de-
creases the SR-maximal mutual informationImaxsS,Yd as in Fig. 8.

FIG. 6. No SR in the “forbidden” interval(per Theorems 1.2
and 2.2)—mutual information versus alpha-stable noise dispersion
when the noise mean(location) lies in the “forbidden” signal-
threshold interval:aP su−A,u+Ad. The graphs show the smoothed
input-output mutual information of 100 trials of a threshold system
as a function of the dispersion of additive white alpha-stable noise
nt with a=2 (Gaussian) in (a) anda=1 (Cauchy noise) in (b). The
system is optimal wheng→0 and thusdoes notshow the SR effect:
The mutual informationIsS,Yd is maximum when it equals the
input entropyHsSd. The noisy signal-forced threshold system has
the form(1). The alpha-stable noisent has locationa=0.4 and adds
to the bipolar input Bernoulli signalst. The system has threshold
u=0.5. The input Bernoulli signal has amplitudeA=0.4 with suc-
cess probabilityp= 1

2. Each trial produced 10 000 input-output
sampleshst ,ytj that estimated the probability densities to obtain the
mutual information.

ROBUST STOCHASTIC RESONANCE FOR SIMPLE… PHYSICAL REVIEW E 70, 031911(2004)

031911-5



mn = Sb

a
D1/b

GS1 +
1

b
D , s19d

sn
2 = Sb

a
D2/bFGS1 +

2

b
D − HGS1 +

1

b
DJ2G . s20d

Figure 3 shows simulation realizations of this corollary for
the Weibull noise density.MATLAB 6.5 [28] generated the
Weibull noise. Weibull[29] first proposed this parametric
probability density function to model the fracture of materi-
als under repetitive stress. This density has become a stan-
dard model of multipart system reliability[30]. It can also
effectively model signals and noise in many data-rich sys-
tems such as radar clutter[31] and confocal laser scanning
microscopy[32].

We next state a result that shows that we cannot in general
omit the threshold-interval condition in the hypothesis of
Theorem 1.1. Noise does not help a thresholdu that already
lies betweenu−A andu+A.

Theorem 1.2. Suppose that the threshold signal system(1)
has noise probability density functionpsnd and that the input
signalS is subthresholdsA,ud. Suppose that the noise mean
Efng lies in the signal-threshold intervalsu−A,u+Ad if psnd
has finite variance. Then the threshold system(1) does not
exhibit the nonmonotone SR effect in the sense thatIsS,Yd is
maximum ass→0:

IsS,Yd = HsYd = HsSd as s → 0. s21d

The Appendix gives the proof.

IV. SR FOR THRESHOLD SYSTEMS WITH INFINITE-
VARIANCE NOISE

We now proceed to the more general(and more realistic)
case where infinite-variance noise interferes with the thresh-
old system. The SR effect also occurs in other systems with
impulsive infinite-variance noise[16,33]. We can model
many types of impulsive noise withsymmetricalpha-stable
bell-curve probability density functions with parametera in
the characteristic functionwsvd=exph−guvuaj. Hereg is the
dispersionparameter[34–37].

The parametera controls tail thickness and lies in 0,a
ø2. Noise grows more impulsive asa falls and the bell-
curve tails grow thicker. The(thin-tailed) Gaussian density
results whena=2 or whenwsvd=exph−gv2j. So the stan-
dard Gaussian random variable has zero mean and variance
s2=2 (wheng=1). The parametera gives the thicker-tailed
Cauchy bell curve whena=1 or wsvd=exph−uvuj for a zero
location sa=0d and unit dispersionsg=1d Cauchy random
variable. The moments of stable distributions witha,2 are
finite only up to orderk for k,a. The Gaussian density
alone has finite variance and higher moments. Alpha-stable
random variables characterize the class of normalized sums
of independent random variables that converge in distribu-
tion to a random variable[34] as in the famous Gaussian
special case called the “central limit theorem.”

Alpha-stable models tend to work well when the noise or
signal data contain “outliers”— and all do to some degree.

Models with a,2 can accurately describe impulsive noise
in telephone lines, underwater acoustics, low-frequency at-
mospheric signals, fluctuations in gravitational fields and fi-
nancial prices, and many other processes[37,38]. Note that
the best choice ofa is an empirical question for bell-curve
phenomena. Bell-curve behavior alone does not justify the
(extreme) assumption of the Gaussian bell curve. Figure 4
shows realizations of four symmetric alpha-stable noise ran-
dom variables.

Theorem 2.1 applies toanyalpha-stable noise model. The
density need not be symmetric. A general alpha-stable prob-
ability density function f has characteristic functionw
[36,37,41,42]

wsvd = expHiav − guvuaS1 + ib sgnsvdtan
ap

2
DJ

for a Þ 1 s22d

and

wsvd = exphiav − guvuf1 − 2ib lnuvusgnsvd/pgj for a = 1,

s23d

where

sgnsvd = 5 1 if v . 0

0 if v = 0

− 1 if v , 0

s24d

and i =Î−1, 0,aø2, −1øbø1, andg.0. The parameter
a is the characteristic exponent. Again the variance of an
alpha-stable density does not exist ifa,2. The location pa-
rametera is the “mean” of the density whena.1. b is a
skewness parameter. The density is symmetric abouta when
b=0. The theorem below still holds even whenbÞ0. The
dispersion parameterg acts like a variance because it con-
trols the width of a symmetric alpha-stable bell curve. There
are no known closed forms of thea-stable densities for most
a’s. Numerical integration ofw produced the simulation re-
sults in Fig. 4.

The proof of Theorem 2.1 in[12] is simpler than the proof
in the finite-variance case because all stable noise densities
have a characteristic function with the exponential form in
Eqs. (22) and (23). So zero noise dispersion givesw as a
simple complex exponential and hence gives the correspond-
ing density as a delta spike that can fall outside the interval
su−A,u+Ad.

Theorem 2.1. SupposeIsS,Yd.0 and the threshold sys-
tem (1) uses alpha-stable noise with location parameter
a¹ su−A,u+Ad. Then the system(1) exhibits the nonmono-
tone SR effect if the input signal is subthreshold.

Figure 5 gives a typical example of the SR effect for
highly impulsive noise with infinite variance. The alpha-
stable noises havea=1 (Cauchy) and a=1.5. So frequent
and violent noise spikes interfere with the signal. Figure 5
also illustrates the empirical trends in Figs. 7 and 8: A falling
tail-thickness parametera produces an increasing optimal
noise dispersiongopt but a decreasing SR-maximal mutual
information ImaxsS,Yd. We next state a new sufficient condi-
tion for SR not to occur in an impulsive threshold system.
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Theorem 2.2. Suppose that the threshold signal system(1)
has subthreshold input signal and use alpha-stable noise with
location parameteraP su−A,u+Ad. Then the threshold sys-
tem (1) does not exhibit the nonmonotone SR effect:IsS,Yd
is maximum asg→0:

IsS,Yd = HsYd = HsSd asg → 0. s25d

The Appendix gives the proof. Figure 6 shows the noise-
mutual information profile of the subthreshold signal system
with noise location (mean) in the “forbidden” signal-
threshold interval.

Statistical regression confirmed an exponential relation-
ship between the optimal noise dispersiongopt and the bell-
curve tail-thickness parametera : goptsad=10b0+b1a for pa-
rametersb0 and b1 that depend on the signal amplitudeA.
Then the log-transformation of the optimal dispersion gives
the linear model log10goptsad=b0+b1a. Table I shows the

estimated parametersb̂0 and b̂1 and the coefficient of deter-
minationr l

2 for 20 signal amplitudes in the threshold neuron
using SPSS software. All observed significance levels or

p-values were less than 10−4. Thep-values measure the cred-
ibility of the null hypothesis that the regression lines have
zero slope or other coefficients. The exponential trend’s ex-
ponent is linear for most amplitudes but becomes quadratic
for very small amplitudes and for amplitudes close to the
thresholdu= 1

2 [or goptsad=10b0+b1a+b2a2
for a quadratic fit to

the data]. Figure 7 shows 6 of the 20 log-linear plots.
We also found an approximate linear relationship

ImaxsS,Y;ad=b0+b1a for the SR-maximal mutual informa-
tion ImaxsS,Yd as a function of the tail-thickness parametera.

Table II shows the estimated parametersb̂0 and b̂1 and the
coefficient of determinationr l

2 for 20 signal amplitudes in the
threshold neuron. All observed significance levels or
p-values were less than 10−4. There is a clear linear trend for
most amplitudesA. The trend becomes quadratic for very

TABLE I. Linear regression estimates of the SR-optimal log
dispersiongopt as a function of the bell-curve tail-thickness param-
etera from a symmetric alpha-stable noise density. The parameters
b0 and b1 relate log10gopt and a through a linear relationship:
log10goptsad=b0+b1a. The coefficient of determinationr l

2 shows
how well the linear model fits the log-transformed data. The last
column shows the coefficient of determinationrq

2 for the quadratic
model log10goptsad=b0+b1a+b2a2. All observed significance lev-
els orp-values were less than 10−4.

Signal amplitude
Linear model

Regression coefficients Quadratic model

A b̂0 b̂1 r l
2 rq

2

0.025 0.0701 −0.5944 0.9003 0.9444

0.050 0.1002 −0.6087 0.9321 0.9723

0.075 0.1124 −0.6192 0.9490 0.9842

0.100 0.1180 −0.6261 0.9558 0.9888

0.125 0.1090 −0.6228 0.9594 0.9910

0.150 0.1078 −0.6251 0.9679 0.9921

0.175 0.1026 −0.6273 0.9672 0.9933

0.200 0.0915 −0.6214 0.9699 0.9942

0.225 0.0810 −0.6161 0.9737 0.9950

0.250 0.0694 −0.6172 0.9781 0.9959

0.275 0.0595 −0.6149 0.9826 0.9964

0.300 0.0439 −0.6148 0.9869 0.9961

0.325 0.0290 −0.6184 0.9903 0.9962

0.350 0.0116 −0.6211 0.9935 0.9961

0.375 −0.0134 −0.6215 0.9957 0.9960

0.400 −0.0313 −0.6367 0.9947 0.9951

0.425 −0.0705 −0.6432 0.9903 0.9950

0.450 −0.1107 −0.6688 0.9757 0.9944

0.475 −0.1837 −0.7217 0.9408 0.9911

0.490 −0.2805 −0.8053 0.8987 0.9863

FIG. 7. Exponential law for optimal noise dispersiongopt as a
function of bell-curve thickness parametera for the mutual-
information performance measure and for different signal ampli-
tudesA. The optimal noise dispersiongopt depends on the parameter
a through the exponential relationgoptsad=10b0+b1a for parameters
b0 andb1 [or goptsad=10b0+b1a+b2a2

for a quadratic fit to the data].

Table I shows the estimated parametersb̂0 and b̂1 for 20 input
Bernoulli signal amplitudesA. The exponential trend’s exponent is
linear for most amplitudes but becomes quadratic for very small
amplitudes and for amplitudes close to the thresholdu= 1

2. All ob-
served significance levels orp-values were less than 10−4.
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small amplitudes and for amplitudes close to the threshold
u= 1

2. Figure 8 shows 6 of the 20 linear plots.

V. CONCLUSIONS

Both theory and detailed simulations show that almost all
noise types produce stochastic resonance in threshold sys-
tems that use subthreshold signals. These results help explain
the widespread occurrence of the SR effect in mechanical
and biological threshold systems[43–49]. The broad gener-
ality of the results suggests that SR should occur in any
nonlinear system whose input-output structure approximates
a threshold system as in the many models of continuous
neurons[50–52]. The infinite-variance theoretical and simu-
lation results further imply that such widespread SR effects
should be robust against violent noise impulses.
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APPENDIX: PROOFS OF THEOREMS 1.2 AND 2.2

The two proofs below use the same idea as do the proofs
for Theorems 1.1 and 2.1[12]. Assume 0, PSssd,1 to
avoid triviality when PSssd=0 or 1. We show thatHsYd
→HsSd and HsYuSd→0 as s→0 or g→0. So IsS,Yd
→HsSd as s→0 or g→0 and is maximum sinceIsS,Yd
=HsYd−HsYuSd and IsS,YdøHsSd by the data processing
inequality: IsS,Sdù I(S,gsSd)= IsS,Yd for a Markov chainS
→S→Y [19]. The boundary caseIsS,Sd=HsSd implies
IsS,YdøHsSd.

Finite-variance noise case (Theorem 1.2)

Now we show thatPYuSsy usd is either 1 or 0 ass→0 or
g→0. Let the mean of the noise bem=Efng and the variance
be s2=Efsn−md2g. ThenmP su−A,u+Ad by hypothesis.

TABLE II. Linear regression of the SR-maximal mutual infor-
mation ImaxsS,Yd as a function of the bell-curve tail-thickness pa-
rametera from a symmetric alpha-stable noise density. The param-
etersb0 andb1 relateImaxsS,Yd anda through a linear relationship:
ImaxsS,Y;ad=b0+b1a. The coefficient of determinationr l

2 shows
how well the linear model fits the data. The last column shows the
coefficient of determination rq

2 for the quadratic model
ImaxsS,Y;ad=b0+b1a+b2a2. All observed significance levels or
p-values were less than 10−4.

Signal amplitude
Linear model

Regression coefficients Quadratic model

A b̂0 b̂1 r l
2 rq

2

0.025 −0.0001 0.0006 0.9312 0.9907

0.050 −0.0008 0.0022 0.9370 0.9972

0.075 −0.0018 0.0049 0.9401 0.9985

0.100 −0.0031 0.0086 0.9440 0.9990

0.125 −0.0048 0.0134 0.9477 0.9993

0.150 −0.0068 0.0190 0.9521 0.9995

0.175 −0.0090 0.0256 0.9558 0.9997

0.200 −0.0113 0.0329 0.9612 0.9998

0.225 −0.0138 0.0411 0.9658 0.9998

0.250 −0.0161 0.0500 0.9715 0.9997

0.275 −0.0185 0.0596 0.9764 0.9995

0.300 −0.0207 0.0698 0.9816 0.9993

0.325 −0.0224 0.0807 0.9866 0.9990

0.350 −0.0236 0.0920 0.9913 0.9987

0.375 −0.0240 0.1039 0.9951 0.9984

0.400 −0.0229 0.1161 0.9976 0.9981

0.425 −0.0196 0.1286 0.9972 0.9977

0.450 −0.0120 0.1408 0.9905 0.9975

0.475 0.0058 0.1513 0.9655 0.9973

0.490 0.0336 0.1527 0.9145 0.9959

FIG. 8. Linear regression for maximal mutual information
ImaxsS,Yd as a function of bell-curve thickness parametera for
different signal amplitudesA. The maximal mutual information
ImaxsS,Yd depends on the parametera through the linear relation-
ship ImaxsS,Y;ad=b0+b1a for parametersb0 and b1 [or Imaxsad
=b0+b1a+b2a2 for a quadratic fit to the data]. Table II shows the

estimated parametersb̂0 and b̂1 for 20 input Bernoulli signal am-
plitudes A. The linear trend is strong for most amplitudesA. The
trend becomes quadratic for very small amplitudes and for ampli-
tudes close to the thresholdu= 1

2. All observed significance levels or
p-values were less than 10−4.
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Consider first PYuSs0u0d. Pick «= 1
2dsu+A,md= 1

2su+A
−md.0. So u+A−«=u+A−«+m−m=m+su+A−md−«
=m+2«−«=m+«. Then

PYuSs0u0d =E
−`

u+A

psnddn sA1d

ùE
−`

u+A−«

psnddn sA2d

=E
−`

m+«

psnddn sA3d

=1 −E
m+«

`

psnddn sA4d

=1 − Prhn ù m+ «j = 1 − Prhn − mù «j sA5d

ù1 − Prhun − mu ù «j sA6d

ù1 −
s2

«2 by Chebyshev ’ s inequalitysA7d

→1 ass → 0. sA8d

So PYuSs0u0d=1.
Similarly for PYuSs1u1d: Pick «= 1

2dsu−A,md= 1
2sm−u

+Ad.0. So u−A+«=u−A+«+m−m=m+su−A−md+«
=m−2«+«=m−«. Then

PYuSs1u1d =E
u−A

`

psnddn sA9d

ùE
u−A+«

`

psnddn sA10d

=E
m−«

`

psnddn sA11d

=1 −E
−`

m−«

psnddn sA12d

=1 − Prhn ø m− «j = 1 − Prhn − mø − «j sA13d

ù1 − Prhun − mu ù «j sA14d

ù1 −
s2

«2 by Chebyshev ’ s inequality sA15d

→1 as s → 0. sA16d

So PYuSs1u1d=1.

Alpha-stable noise case (Theorem 2.2)

The characteristic functionwsvd of alpha-stable noise
density psnd has the exponential form(22) and (23). This
reduces to a simple complex exponential in the zero-
dispersion limit:

lim
g→0

wsvd = exphiavj sA17d

for all characteristic exponentsa, skewnessesb, and loca-
tions a. So Fourier transformation gives the corresponding
density function in the limiting casesg→0d as a translated
delta functiond:

lim
g→0

psnd = dsn − ad. sA18d

ThenaP su−A,u+Ad gives

PYuSs0u0d =E
−`

u+A

psnddn sA19d

→E
−`

u+A

dsn − addn= 1 asg → 0. sA20d

Similarly

PYuSs1u1d =E
u−A

`

psnddn sA21d

→E
u−A

`

dsn − addn= 1 as g → 0. sA22d

The two conditional probabilities for both the finite-
variance and infinite-variance cases likewise imply that
PYuSs0u1d=PYuSs1u0d=0 ass→0 or g→0. These four prob-
abilities further imply that

HsYuSd = − o
s
o

y

PSYss,ydlog2 PYuSsyusd sA23d

=o
s

PSssdo
y

PYuSsyusdlog2 PYuSsyusd sA24d

=0, sA25d

where we use the fact(L’Hôpital) that 0 log20=0. The un-
conditional entropyHsYd becomes

HsYd = − o
y

PYsydlog2 PYsyd sA26d

=− o
s

PSssdlog2 PSssd sA27d

=HsSd sA28d

because
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PYsyd = o
s

PYuSsyusdPSssd sA29d

=PYuSsyu0dPSs0d + PYuSsyu1dPSs1d sA30d

=PYuSsyu0dPSs0d + PYuSsyu1df1 − PSs0dg sA31d

=fPYuSsyu0d − PYuSsyu1dgPSs0d + PYuSsyu1d sA32d

=fPYuSsyu1d − PYuSsyu0dgPSs1d + PYuSsyu0d sA33d

=HPSs1d if y = 1

PSs0d if y = 0.
sA34d
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