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Adaptive Stochastic Resonance in Noisy Neurons
Based on Mutual Information

Sanya Mitaim and Bart Kosko

Abstract—Noise can improve how memoryless neurons process
signals and maximize their throughput information. Such favor-
able use of noise is the so-called “stochastic resonance” or SR ef-
fect at the level of threshold neurons and continuous neurons. This
paper presents theoretical and simulation evidence that 1) lone
noisy threshold and continuous neurons exhibit the SR effect in
terms of the mutual information between random input and output
sequences, 2) a new statistically robust learning law can find this
entropy-optimal noise level, and 3) the adaptive SR effect is robust
against highly impulsive noise with infinite variance. Histograms
estimate the relevant probability density functions at each learning
iteration. A theorem shows that almost all noise probability den-
sity functions produce some SR effect in threshold neurons even if
the noise is impulsive and has infinite variance. The optimal noise
level in threshold neurons also behaves nonlinearly as the input
signal amplitude increases. Simulations further show that the SR
effect persists for several sigmoidal neurons and for Gaussian ra-
dial-basis-function neurons.

Index Terms—Alpha-stable noise, impulsive noise, infinite-vari-
ance statistics, mutual information, noise processing, sigmoidal
neurons and radial basis functions, stochastic gradient learning,
stochastic resonance (SR), threshold neurons.

I. NOISE AND ADAPTIVE STOCHASTIC RESONANCE

NOISE is an unwanted signal or source of energy. Scientists
and engineers have largely tried to filter noise or cancel it

or mask it out of existence. The Noise Pollution Clearinghouse
condemns noise outright: “Noise is unwanted sound. It is de-
rived from the Latin word ‘nausea’ meaning seasickness. Noise
is among the most pervasive pollutants today. Noise from road
traffic, jet planes, jet skis, garbage trucks, construction equip-
ment, manufacturing processes, lawn mowers, leaf blowers, and
boom boxes, to name a few, are among the unwanted sounds that
are routinely broadcast into the air.”

The new field of stochastic resonance or SR [3], [4], [9],
[26], [32], [52], [53], [61], [71] rests on an exception to this
undeclared war on noise. SR occurs when noise enhances a
faint signal in a nonlinear system. It occurs when the addition
of a small amount of noise increases a nonlinear system’s
performance measure such as its signal-to-noise ratio (SNR),
cross-correlation, or mutual information. The nonlinearity is
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often as simple as a memoryless threshold. So a great deal of SR
research has focused on how dither-like noise can help spiking
neurons process data streams [12], [33], [38]. SR occurs in
physical systems such as ring lasers [56], threshold hysteretic
Schmitt triggers [27], superconducting quantum interference
devices (SQUIDs) [36], Josephson junctions [7], chemical
systems [25], and quantum-mechanical systems [34]. SR also
occurs in biological systems such as the rat [18], crayfish [23],
cricket [48], river paddlefish [66], and in many types of model
neurons [8], [10], [16], [17], [63].

Fig. 1 shows how uniform pixel noise can improve our subjec-
tive perception of an image. The system quantizes the original
gray-scale “Lena” image into a binary image of black and white
pixels. It emits a white pixel as output if the input gray-scale
pixel equals or exceeds a threshold. It emits a black pixel as
output if the input gray-scale pixel falls below the threshold.
This quantizer is biased because it does not set the threshold at
the midpoint of the gray scale. So the quantized version of the
original image contains almost no information. A small level
of noise sharpens the image contours and helps fill in features
when it adds to the original image before the system applies
the threshold. Too much noise swamps the image and degrades
its contours. Gammaitoni [29] and others [70] have proposed a
dithering argument for this SR effect and still others [55] have
applied this argument to still images. The argument involves
adding dither noise to a signal before quantization. Consider
gray-scale pixel and binary output pixel
with threshold . Then the dithered quantizer gives

if and only if the noise is
uniform on ( 1/2, 1/2). But the subjective SR result in Fig. 1
holds for nonuniform infinite-variance Cauchy noise and for
many other types of nonuniform noise. So the dithering argu-
ment only partially explains this subjective SR effect.

We first show that noise added to a memoryless threshold
neuron produces the SR effect in terms of the Shannon mu-
tual information between realizations of a random
(Bernoulli) bipolar input signal and realizations of the
thresholded output random variable . Fig. 2 shows a typical
simulation confirmation of this SR result for additive Gaussian
noise. The theorem holds for more general bell curves that have
thicker tails and thus that have infinite variance and can pro-
duce impulsive noise. Extensive simulations reproduce these
SR effects for several standard continuous sigmoidal neurons
and for Gaussian radial basis functions (see Fig. 13).

We next show that a new robust learning law can find the op-
timal noise variance and dispersion for both threshold and con-
tinuous neurons and for both finite-variance and infinite-vari-
ance noise. We introduced adaptive stochastic resonance in [57]
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Fig. 1. A “dithering” Cauchy pixel noise can improve subjective image quality. The noise produces a nonmonotonic response: A small level of noise sharpens
the image features while too much noise degrades them. These noisy images result when we apply a pixel threshold to the popular “Lena” image used in signal
processing [60]: y = g((x + n) � �) where g(x) = 1 if x � 0 and g(x) = 0 if x < 0 for an input pixel value x 2 [0; 1] and output pixel value y 2 f0;1g.
The input image’s gray-scale pixels vary from 0 (black) to 1 (white). The threshold is � = 0:06. Thresholding the original “Lena” image gives the faint image in
(a). The Cauchy noise n has zero location and its dispersion 
 grows from (b)–(d): 
 = 0:01 in (b), 
 = 0:08 in (c), and 
 = 0:50 in (d).

Fig. 2. The nonmonotonic signature of stochastic resonance. The graph
shows the smoothed input-output mutual information of a threshold system
as a function of the standard deviation of additive white Gaussian noise n .
The vertical dashed lines show the absolute deviation between the smallest
and largest outliers in each sample average of 100 outcomes. The system has a
nonzero noise optimum at � � 0:328 and thus shows the SR effect. The
noisy signal-forced threshold system has the form (6). The Gaussian noise n
adds to the external forcing bipolar signal s .

and [47] as a robustified stochastic gradient ascent algorithm
that slowly finds the optimal noise variance or dispersion given
thousands of joint samples of the noise input and the nonlinear
system’s spectral SNR or its cross correlation. This paper ex-
tends adaptive SR to the mutual-information performance mea-
sure. The last section derives and tests a new robustified learning
law that finds the entropically optimal noise level given his-
togram estimates of the underlying marginal and conditional
probability density functions. This statistically robust algorithm
uses only the sign of the noise gradient rather than the gradient
itself.

The results show that model neurons can exploit low levels
of crosstalk or other forms of noise in their local environment.
Even highly impulsive noise can help neurons maximize their
throughput information. Such noise-based information maxi-
mization is consistent with Linsker’s principle of information
maximization in neural networks [49], [50]. These findings
support the implicit SR conjecture that biological neurons have

evolved to computationally exploit their noisy environments
[11], [18], [19], [23], [48], [58], [64], [69]. Further support
is that these adaptive SR effects still hold for other sigmoidal
and nonsigmoidal (Gaussian) neurons as Fig. 13 shows. These
results suggest that biological neurons should experience less
mutual information if they do not use their local noise.

II. MUTUAL INFORMATION AND SR IN NEURON MODELS

This section reviews Shannon’s measure of mutual informa-
tion between two random variables. Then it reviews the simple
nonlinear threshold model of a neuron and the continuous
neuron model that show the SR effect for bipolar signals.

A. Mutual Information Measure

Mutual information [20] can measure the SR effect [12], [22],
[33], [43], [67]. The discrete Shannon mutual information of the
input and output has the form

(1)

(2)

(3)

(4)

We can view the mutual information in the form of expectation
of a random variable :

(5)

Here is the probability density of the input , is the
probability density of the output , is the conditional
density of the output given the input , and is joint
density of the input and the output .
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Mutual information also measures the pseudodis-
tance between the joint probability density
and the product density . This holds for
the Kullback [20] pseudodistance measure

. Then Jensen’s
inequality implies that . Random variables
and are statistically independent if and only if

. Hence implies some degree of dependence.

B. Noisy Threshold Neuron

We use the discrete-time threshold neuron model [12], [29],
[39], [44], [45]

if
if

(6)

where is the neuron’s threshold, is the bipolar input
Bernoulli signal (with success probability 1/2) with amplitude

, and is the additive white noise with probability den-
sity . Experiments with other success probabilities near 1/2
did not produce substantially different simulation results.

C. Noisy Continuous Neurons

We use the additive continuous neuron model with a neuronal
signal function [45]

(7)

(8)

Here and are the input and additive noise of the neuron
and is the binary output. The neuron feeds its output signal

back to itself and emits the threshold bipolar signal
as output.

• Hyperbolic Tangent This signal function gives an addi-
tive neuron model that is bistable [2], [10], [15], [39], [40],
[45]

(9)

• Linear-Threshold This simple linear-threshold signal
function [45] also gives the SR effect in the neuron

(10)

for a constant . We use .
• Exponential This signal function is asymmetric with the

form [45]

otherwise
(11)

for a constant . We use .
• Gaussian. The Gaussian or “radial basis” signal function

[45] differs from the other signal functions above because
it is nonmonotonic

(12)

for a constant . We use .

III. MUTUAL INFORMATION OF THE THRESHOLD NEURON

WITH BIPOLAR INPUT SIGNALS

A. SR in Memoryless Threshold Neurons

This section derives analytical SR results for the noisy
threshold neuron based on the marginal probability density
function of the output and the conditional density

. The system is the binary neuron with a fixed
threshold . The bipolar (Bernoulli with success probability )
input signal has amplitude : with proba-
bility density . The noise adds to the signal before
it enters the neuron. So the neuron’s output has the form (6).
Fig. 5 plots the mutual information for four standard
closed-form noise probability density functions 18, 24, 29, and
38. The central result is a theorem that holds for almost all noise
probability densities so long as the mean noise falls outside a
user-controlled interval that depends on the threshold .

The symbol ‘0’ denotes the input signal and output
signal . The symbol ‘1’ denotes the input signal
and output signal . We also assume subthreshold input
signals: for positive . Then the conditional probabilities

are

(13)

(14)

(15)

(16)

and the marginal density is

(17)

Researchers have derived the conditional probabilities
of the threshold system with Gaussian noise with

bipolar inputs [12] and Gaussian inputs [67]. We next derive
for uniform, Laplace, and (infinite-variance) Cauchy

noise as well. Fig. 3 shows four examples of the unimodal
noise densities and their realizations. Then we introduce stable
distributions to model a spectrum of impulsive noise types.

• Gaussian Noise The Gaussian density with zero mean and
variance has the form

(18)

Then the conditional probabilities are

(19)

(20)
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Fig. 3. Probability density functions and sample realizations. The figure shows Gaussian, Laplace, and uniform random variables n with zero mean and variance
of two: E[n] = 0 and E[n ] = � = 2. The Cauchy density function has zero location and unit dispersion but infinite variance. The pseudorandom number
generators in [65] act as noise sources for these probability densities.

(21)

(22)

The error function erf is

(23)

• Uniform Noise The uniform density with zero mean and
variance has the form

if

otherwise.
(24)

Then the conditional probabilities are

if
otherwise

(25)

(26)

(27)

(28)

• Laplace Noise The Laplace density with zero mean and
variance has the form

(29)

Then the conditional probabilities are

(30)

(31)

(32)

(33)
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• Cauchy Noise The Cauchy density with zero location and
finite dispersion (but infinite variance) has the form

(34)

Then the conditional probabilities are

(35)

(36)

(37)

(38)

• Symmetric Alpha-Stable Noise: Thick-Tailed Bell
Curves

We model many types of impulsive noise with sym-
metric alpha-stable bell-curve probability density func-
tions with parameter in the characteristic function

. Here is the dispersion param-
eter [6], [28], [35], [62]. The parameter controls tail
thickness and lies in . Noise grows more
impulsive as falls and the bell-curve tails grow thicker.
The (thin-tailed) Gaussian density results when
or when . So the standard Gaussian
random variable has zero mean and variance
(when ). The parameter gives the thicker-tailed
Cauchy bell curve when or
for a zero location and unit dispersion
Cauchy random variable. The moments of stable distribu-
tions with are finite only up to order for .
The Gaussian density alone has finite variance and higher
moments. Alpha-stable random variables characterize the
class of normalized sums of independent random vari-
ables that converge in distribution to a random variable [6]
as in the famous Gaussian special case called the “central
limit theorem.” Alpha-stable models tend to work well
when the noise or signal data contains “outliers”—and all
do to some degree. Models with can accurately
describe impulsive noise in telephone lines, underwater
acoustics, low-frequency atmospheric signals, fluctua-
tions in gravitational fields and financial prices, and many
other processes [46], [62]. Note that the best choice of

is an empirical question for bell-curve phenomena.
Bell-curve behavior alone does not justify the assumption
of the Gaussian bell curve.

Fig. 4 shows realizations of four symmetric alpha-stable
random variables. A general alpha-stable probability density
function has characteristic function [1], [5], [35], [62]

(39)
and

(40)

where

if
if
if

(41)

and , , , and . The pa-
rameter is the characteristic exponent. Again the variance of
an alpha-stable density does not exist if . The location pa-
rameter is the “mean” of the density when . is a skew-
ness parameter. The density is symmetric about when .
The theorem shown still holds even when . The dispersion
parameter acts like a variance because it controls the width of
a symmetric alpha-stable bell curve. There are no known closed
forms of the alpha-stable densities for most ’s. Numerical in-
tegration of gives the probability densities in Fig. 4.

The following theorem shows that noisy threshold neurons
produce some SR effect for almost all noise probability descrip-
tions. The proof shows that if then eventually the
mutual information tends toward zero as the noise vari-
ance or dispersion tends toward zero. So the mutual information

must increase as the noise variance increases from zero.
The crucial assumption is that the noise mean (or location
parameter) not lie in the signal-threshold interval .

Theorem: Suppose that the threshold signal system (6) has
noise probability density function and that the input signal

is subthreshold . Suppose that there is some statis-
tical dependence between input random variable and output
random variable (so that ). Suppose that the
noise mean does not lie in the signal-threshold interval

if has finite variance. Suppose that
for the location parameter of an alpha-stable

noise density with characteristic function (39), (40). Then the
threshold system (6) exhibits the nonmonotone SR effect in the
sense that as or .

Proof: Assume to avoid triviality when
or 1. We show that and are asymptotically

independent: as (or as ). Recall that
if and only if and are statistically independent

[20]. So we need to show only that
or as (or as ) for all signal
symbols and . The two-symbol alphabet set gives

(42)

(43)

(44)

(45)

So we need to show only that as
(or as ). This condition implies that

and . We assume for simplicity
that the noise density is integrable. The argument below
still holds if is discrete and if we replace integrals with
appropriate sums.

Consider '. Then (13) and (15) imply that

(46)
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Fig. 4. Samples of standard symmetric alpha-stable probability densities and their realizations. (a) Density functions with zero location (a = 0) and unit
dispersion (
 = 1) for � = 2, 1.8, 1.5, and 1. The densities are bell curves that have thicker tails as � decreases and thus that model increasingly impulsive noise
as � decreases. The case � = 2 gives a Gaussian density with variance two (or unit dispersion). The parameter � = 1 gives the Cauchy density. (b) Samples of
alpha-stable random variables with zero location and unit dispersion. The plots show realizations when � = 2, 1.8, 1.5, and 1. Note the scale differences on the
y-axes. The alpha-stable noise n becomes more impulsive as the parameter � falls. The algorithm in [13], [68] generates these realizations. (c) Density functions
for � = 1:8 with dispersions 
 = 0.5, 1, and 2. (d) Samples of alpha-stable noise n for � = 1:8 with dispersions 
 = 0.5, 1, and 2.

(47)

Similarly for '

(48)

(49)

Then

(50)

The result now follows if we can show that

(51)

Case 1) Finite-variance noise. Let the mean of the noise be
and the variance be . Then

by hypothesis.
Now suppose that . Pick

. So
.

Then

(52)
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(53)

(54)

(55)

(56)

(57)

' (58)

(59)

Suppose next that . Then pick
and so

.
Then

(60)

(61)

(62)

(63)

(64)

(65)

' (66)

(67)

Case 2) Impulsive noise: Alpha-stable noise. The character-
istic function of alpha-stable density has the ex-
ponential form (39), (40). This reduces to a simple complex
exponential in the zero-dispersion limit

(68)

for all , skewness , and location . So Fourier transforma-
tion gives the corresponding density function in the limiting
case as a translated delta function

(69)

Fig. 5. Mutual information I profiles of a threshold system with bipolar input
for four kinds of noise. The system has threshold � = 0:5. The input Bernoulli
signal is bipolar with amplitude A = 0:4.

Then

(70)

(71)

(72)

because .
Then as . So Cases 1 and 2 imply

that as for finite-variance noise or as
for alpha-stable noise.

B. Theoretical Results for Closed-Form Noise Densities

Inserting Gaussian or other specific closed-form conditional
probability densities from (19)–(38) into (1)–(4)
gives exact solutions of the mutual information as a
function of the noise parameter . Fig. 5 shows -versus- pro-
files of a threshold system with four kinds of noise: Gaussian,
uniform, Laplace, and Cauchy. The profile of the uniform
noise has the highest peak among the four noise densities for
the same system (same threshold and same input amplitude

). And the profile has a distinct shape: it drops sharply after
it reaches its peak as grows. Gaussian noise gives the second
highest while Cauchy gives the lowest. The threshold system
requires different optimal standard deviations (or dispersions)
for different kinds of noise.

The closed form of the versus profiles in Fig. 5 also al-
lows a direct analysis of how the optimal noise depends on the
signal amplitude for Gaussian, uniform, Laplace, and Cauchy
noise. Suppose the signal amplitude is a subthreshold input in
a noisy threshold neuron with threshold : . Then will the
optimal noise (or ) decrease as the signal amplitude
moves closer to the threshold ?

Intuition might suggest that the threshold system should need
less noise to produce the entropic SR effect as the amplitude
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Fig. 6. Optimal SR noise schedules for a noisy threshold neuron with threshold � = 0:5. The schedules show how optimal noise variance or dispersion depends
on signal amplitude A for the four closed-form noise results in Fig. 5.

moves closer to the threshold . But the results in Fig. 6 show
that the compound nonlinearities involved produce no such
simple relationship. The different noise types produce different
SR optimality schedules. Fig. 6 shows four optimal noise
schedules for the threshold value . Other threshold
values produced similar results. Only optimal Laplace and
Cauchy noise produce the more intuitive monotone decrease in
the optimal noise level with rising signal amplitude . Optimal
uniform noise grows linearly with signal amplitude while
optimal Gaussian noise defines a nonmonotonic schedule.

IV. STOCHASTIC RESONANCE IN COMPUTER SIMULATIONS

Discrete simulations can model continuous-time nonlinear
dynamical systems if a stochastic numerical scheme approxi-
mates the system dynamics and its signal and noise response.
We used a simple stochastic version of the Euler scheme to
model a nonlinear system with input forcing signal and noise.
We measured how the system performed based on only the
system’s input-output samples.

Consider the forced dynamical system with additive forcing
input signal and “white” noise

(73)

(74)

These models simply add a noise term to a differential equation
rather than use formal Ito or Stratonovich stochastic differentials
[14], [24], [31]. “Whiteness” of a random variable here means
that is white only over some large but finite frequency band-
width interval for some large . Random num-

bers from the algorithms in [13], [65], [68] act as noise from
various probability densities in our simulations. The next sec-
tions show how discretized continuous-time systems produced
the discrete-time systems we used for computer simulations.

A. Nonlinear Systems With White Gaussian Noise

Consider the dynamical system (73) with initial condition
. Here the white Gaussian noise has zero mean and

unit variance so that has zero mean and variance .
This system corresponds to the stochastic initial value problem
[31]

(75)

for initial condition . Here ,
, and is the standard Wiener process [31]. We

used Euler’s method (the Euler-Maruyama scheme) [21], [31],
[42] to obtain the discrete form for computer simulation

(76)

(77)

for and initial condition . The input sample
has the value of the signal at time step . The zero-mean
white Gaussian noise sequence has unit variance .
The term scales so that conforms with the
Wiener increment [31], [42], [59]. The output sample is some
transformation of the system’s state .

This simple algorithm gives fairly accurate results for mod-
erate nonlinear systems [31], [42], [51], [59]. Other algorithms
may give more accurate numerical solutions of the stochastic
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differential equations for more complicated system dynamics
[31], [54]. All of our simulations used the Euler’s scheme in
(76), (77).

The numerical algorithm in [65] generates a sequence of
pseudo-random numbers from a Gaussian density with zero
mean and unit variance for in (76). Fig. 3 shows the
Gaussian and other densities that have zero mean and a vari-
ance of two.

B. Nonlinear Systems With Other Finite-Variance Noise

We next consider a system (73) with finite-variance noise .
Suppose the noise has variance and again apply Euler’s
method

(78)

(79)

Here the random sequence has density function with
zero mean and unit variance. The numerical algorithms in [65]
generate sequences of random variables for Laplace and uni-
form density functions. Fig. 3 plots these probability density
functions and their realizations with mean zero and variance of
two: and .

C. Nonlinear Systems With Alpha-Stable Noise

Figs. 3 and 4 show realizations of the symmetric alpha-stable
random variable for several characteristic exponents . Again
we assume that the Euler’s method above applies to this class
of random variables with infinite variance. Let be a standard
alpha-stable random variable with parameter and zero loca-
tion and unit dispersion: and . Let denote
a “scale” factor of a random variable. Then has zero
location and dispersion . This leads to the Euler’s nu-
merical solution

(80)

(81)

The algorithm in [13], [68] generates a standard alpha-stable
random variable .

V. DERIVATION OF SR LEARNING LAW

We show that a memoryless neuron can use stochastic gra-
dient ascent to learn the SR effect [47], [57]

(82)

We assume that does not depend on and we use the
natural logarithm. Then the learning term has the form

(83)

(84)

(85)

The sum implies
. And

because . So

(86)
We estimate the partial derivative with a ratio of time differences
and replace the denominator with the signum function to avoid
numerical instability

(87)

(88)

where is the marginal density function of the output at
time and is the conditional density function at time .
Then the learning term becomes

(89)

Our previous work [47], [57] on adaptive SR found through
statistical tests that the random learning term had an ap-
proximately Cauchy distribution for the spectral signal-to-noise
and cross-correlation performance measures . These frequent
and energetic Cauchy impulse spikes destabilized the stochastic
learning process. So we “robustified” the learning term with the
standard Cauchy error suppressor [37],
[41]. This included the threshold neuron given a periodic input
sequence.

But detailed simulations revealed a special pattern in the case
of mutual information: The density tends to stay close to
the past density if the values of and are close.
This causes the learning paths to converge quickly near the
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Fig. 7. Finite-variance noise cases: adaptive stochastic resonance for the noisy threshold neuron (6) with bipolar input signal s , amplitudeA = 0:2, and threshold
� = 0:5. The additive noise are (a) Gaussian, (b) uniform, and (c) Laplace. The graphs at the top show the nonmonotonic signatures of SR. The sample paths at
the bottom plots show the convergence if the initial condition � is close to the optimal noise level � . Distant initial conditions may lead to divergence as the
third learning path in (a) shows. The constant learning rates are � = 0:01 for Gaussian and uniform noise and � = 0:02 for Laplace noise.

initial conditions. So we can replace the learning term
with its sign and the learning law simplifies to

(90)

The signum is a simple robustifier and formally consistent with
a two-sided Laplacian distribution [37].

VI. SIMULATION RESULTS

We tested the robust learning law in (90) with the approx-
imation of the learning term in (89). We needed to estimate
the marginal and conditional probability densities , ,
and at each iteration . So at each we collected 1000
input-output samples and used them to estimate the den-
sities with histograms for the threshold system. We used 500 of
the input-output symbols to estimate the probability densities
for the continuous neuron model. We chose the neurons’ and
signals’ parameters below to demonstrate the algorithm. Other
parameters gave similar results.

A. Noisy Threshold Neuron

The threshold neuron had a fixed threshold . The
bipolar input Bernoulli signal has probability

where the amplitude varied from to
(subthreshold inputs). We tried several noise densities

that included the Gaussian, uniform, Laplace, and the impulsive
alpha-stable densities that include the Cauchy density. All noise
densities had zero mean (zero location for Cauchy). We tried to
learn the optimal standard deviation (or optimal dispersion

for alpha-stable noise). We used constant learning rates

for Gaussian and uniform noise, for
Laplace and Cauchy noise, and for alpha-stable
noise with and . We started the learning from
several initial conditions with different noise seeds.

Figs. 7–9 show the adapted SR profiles and the learning
paths for different noise types. The learning paths converged to
the optimal standard deviation (or dispersion ) if the
initial value was near . The learning paths tended to stay
nearer the optimal values for larger input amplitudes.

B. Noisy Continuous Neuron

We used the discrete model in Section IV for simulations.
We used and let each input symbol stay for 50 s. So
for each input symbol we presented the corresponding “spikes”
(plus noise) 5000 times to the neuron. And we collected 5000
discrete-time output “spikes” and averaged them to get the
output symbol. This procedure applied to all types of signal
functions and for all types of noise.

1) Continuous Neurons with Hyperbolic Tangent Signal
Function: We tested the continuous neuron model with hyper-
bolic tangent signal function with several noise densities such
as the Gaussian, uniform, Laplace, and alpha-stable (which
included the Cauchy density). All noise densities had zero
mean (zero location for Cauchy). The bipolar input Bernoulli
signal had success probability
where the amplitude varied from to (sub-
threshold inputs). We used constant learning rates
for Gaussian, uniform, and Laplace noise. We used the smaller
learning rates for alpha-stable noise with
and and used the still smaller learning rate
for Cauchy noise. We started the learning from several initial
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Fig. 8. Finite-variance noise cases: adaptive stochastic resonance for the noisy threshold neuron (6) with bipolar input signal s , amplitudeA = 0:4, and threshold
� = 0:5. The additive noise are (a) Gaussian, (b) uniform, and (c) Laplace. The graphs at the top show the nonmonotonic signatures of SR. The sample paths at the
bottom plots show the convergence of the noise standard deviation � to the noise optimum � for each noise density. The constant learning rates are � = 0:01
for Gaussian and uniform noise and � = 0:02 for Laplace noise.

Fig. 9. Impulsive noise cases: Adaptive stochastic resonance for the noisy threshold neuron (6) with bipolar input signal s , amplitude A = 0:4, and threshold
� = 0:5. The additive noise are �-stable distributed with the parameter (a) � = 1:9, (b) � = 1:5, and (c) � = 1 or Cauchy density. The graphs at the top show
the nonmonotonic signatures of SR. The sample paths at the bottom plots show the convergence of the noise scale � to the noise optimum � for each noise
density. The corresponding dispersions are 
 = � for each �-stable noise. The constant learning rates are � = 0:01 for � = 1:9 and � = 1:5 noise and
� = 0:02 for Cauchy noise � = 1.

conditions with different noise seeds. Figs. 10–12 show the
adapted SR profiles and the learning paths for different
noise types. The learning paths converged near the optimal
standard deviation (or dispersion ) if the initial value
was near .

2) Continuous Neurons with Linear-Threshold, Exponential,
and Gaussian (Radial Basis) Signal Functions: We further
tested the continuous neuron model with linear-threshold,
exponential, and Gaussian (radial basis) signal functions in
Gaussian noise to show the generality of the SR effect. We
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Fig. 10. Finite-variance noise cases: Adaptive stochastic resonance for the noisy continuous neuron (7) with hyperbolic signal function (9) and bipolar input
signal s with amplitude A = 0:2. The additive noise are (a) Gaussian, (b) uniform, and (c) Laplace. The graphs at the top show the nonmonotonic signatures of
SR. The sample paths at the bottom plots show the convergence of the noise standard deviation � to the noise optimum � for each noise density. The constant
learning rates are � = 0:03 for all cases.

Fig. 11. Finite-variance noise cases: Adaptive stochastic resonance for the noisy continuous neuron (7) with hyperbolic signal function (9) and bipolar input
signal s with amplitude A = 0:4. The additive noise are (a) Gaussian, (b) uniform, and (c) Laplace. The graphs at the top show the nonmonotonic signatures of
SR. The sample paths at the bottom plots show the convergence of the noise standard deviation � to the noise optimum � for each noise density. The constant
learning rates are � = 0:03 for all cases.

used the same bipolar input Bernoulli signal with success
probability where the amplitude
is for the linear-threshold and Gaussian signal func-
tions and for the exponential signal function. The
input amplitudes were “subthreshold” for the neuron models

with these signal functions. We used constant learning rates
for the exponential and Gaussian signal functions

and for the linear-threshold signal functions. We
started the learning from several initial conditions with different
noise seeds. Fig. 13 shows the adapted SR profiles and the



1538 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 6, NOVEMBER 2004

Fig. 12. Impulsive noise cases: Adaptive stochastic resonance for the noisy continuous neuron (7) with hyperbolic signal function (9) and bipolar input signal s
with amplitude A = 0:4. The additive noise are �-stable distributed with the parameter (a) � = 1:9, (b) � = 1:5, and (c) � = 1 or Cauchy density. The graphs
at the top show the nonmonotonic signatures of SR. The sample paths at the bottom show the convergence of the noise standard deviation � to the noise optimum
� for each noise density. The constant learning rates are � = 0:02 for � = 1:9, � = 0:01 for � = 1:5, and � = 0:005 for � = 1.

Fig. 13. Adaptive stochastic resonance for continuous neurons with linear-threshold, exponential, and Gaussian (radial basis) signal functions. The bipolar input
signal s has amplitude A = 0:4 for the linear-threshold and Gaussian signal functions and A = 0:6 for the exponential signal function. The additive noise n is
Gaussian. The graphs at the top show the nonmonotonic signatures of SR. The sample paths at the bottom show the convergence of the noise standard deviation
� to the noise optimum � for each case of signal functions: (a) linear-threshold, (b) exponential, and (c) Gaussian. The constant learning rates are � = 0:05
for the linear-threshold signal function and � = 0:02 for the exponential and Gaussian signal functions.

learning paths for the three other signal functions. The learning
paths converged near the optimal standard deviation if the
initial value was near .

VII. CONCLUSION

Threshold neurons exhibit stochastic resonance—they in-
crease their throughput mutual information when faint input
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noise increases in intensity. A theorem shows that this holds for
almost all noise densities. Such noise-based information max-
imization is consistent with Linsker’s principle of information
maximization in neural networks [49], [50]. Closed-form noise
densities allow us to derive the exact dependence of mutual
information on noise dispersion and to observe the nonlinear
relationships between the optimal noise level and the magnitude
of the input signal amplitude. Extensive simulations confirmed
this entropic SR effect for noisy threshold (memoryless) neu-
rons and for simple continuous neurons.

A simple robust stochastic learning law can find the entropi-
cally optimal noise level for both threshold and continuous neu-
rons that process noisy bipolar input signals. This result holds
for many types of finite-variance and infinite-variance (impul-
sive) noise. These noise types can model energetic disturbances
that range from thermal jitter to unmodeled environmental ef-
fects to the random crosstalk of neurons in large neural net-
works. This robust finding supports the implicit SR conjecture
that biological neurons [11], [18], [19], [23], [48], [58], [64],
[69] have evolved over genetic eons to exploit the noise energy
freely available in their local environment.
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