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A B S T R A C T

This paper shows that noise can improve the accuracy of brain-computer interface (BCI) systems. Additive
Gaussian noise can benefit arrays of ensemble support vector machines (ESVMs) that classify P300 or motor
imagery (MI) activities in electroencephalogram (EEG) signals. We show these noise benefits in 64-channel EEG
signals from the BCI Competitions II dataset IIb and BCI Competitions III dataset II for the P300 speller paradigm
and in 3-channel EEG signals from the BCI Competitions II dataset III and BCI Competitions III dataset IIIa for MI
classification systems. We also show that noise can improve the accuracy of EEG classifications based on re-
stricted channel positions in commercial recording systems, such as the 14-channel Emotiv Epoc headset. The
experimental results show that noise can provide classifiers with higher accuracy and can reduce the data
collection time for P300 classification. The results also show that training ESVMs with a concatenated original
dataset and noise-added datasets can improve MI classification. Noise can improve the accuracy of P300 clas-
sification for both intra-subject and inter-subject classification systems for multiple users. Addition of noise can
significantly affect the parameters of polynomial kernel functions and the number of support vectors of the SVM.
This leads to an expansion of the margin between two parallel hyperplanes that eventually improve the clas-
sification accuracy. Particle swarm optimization (PSO) can be used to search for the optimal noise intensity.

1. Introduction

The recently developed brain-computer interfaces (BCIs) use a
variety of brain activity phenomenon that have the potential to improve
the communication performance of paralyzed people [1–3]. BCIs are a
communication system that allows a person to send commands to an
external device through direct measurements of brain activities without
using any movement. Signal sources include electroencephalograms
(EEGs), functional magnetic resonance images (fMRIs), position emis-
sion resonance tomography (PET) and magnetoencephalograms (MEGs)
[4]. Most BCI researchers focus their attention on EEG-based BCIs be-
cause of its non-invasive recordings, low cost, and relative simplicity
[4]. There are many types of brain activity patterns in the EEG signals,
i.e., slow cortical potential (SCP), P300, steady state visual evoked
potential (SSVEP) and motor imagery (MI) [1,5]. A user must produce
different brain activity patterns that will be classified and translated
into commands.

P300 and MI are important types of EEG signals for BCI applications
[5–9]. The applications of P300 include the P300 speller paradigm,
neurophones, wheelchair control and robotic arms [8–12]. The purpose
of P300 applications is to detect the presence of P300 in an EEG. MI
applications include robot control, wheelchair control, car game

control, and rehabilitation [6–9]. The purpose of this paradigm is the
discrimination of MI tasks such as left hand, right hand, finger, and foot
movements.

The performance of a classifier depends on the features and classi-
fication algorithm. Popular choices of features include signal ampli-
tudes, wavelet transform coefficients, and autoregressive (AR) model
coefficients [1,13]. Independent component analysis (ICA) can remove
artifacts and enhance P300 signals [14,15]. Tensor decomposition can
find an optimal feature subspace [16]. Classification techniques include
support vector machines (SVMs), linear discriminant analysis (LDA),
and neural networks [17–19]. Ensemble support vector machines
(ESVMs) [17,18] and convolution neural networks (CNNs) [20] better
solve the problems of P300 signal variation from different subjects than
other techniques [1,18,20]. Other research on EEG classification im-
provement also includes POMDP approach to optimizing P300 speller
BCI paradigm [21], target selection with hybrid feature for BCI-based 2-
D cursor control [22], sparse Bayesian classification of EEG for brain-
computer interface [23], linked component analysis from matrices to
high order tensors with applications to biomedical data [24], multi-
kernel extreme learning machine for EEG classification in brain-com-
puter interface [25], feature weighting and regularization of common
spatial patterns in EEG-based Motor Imagery BCI [26], and a transform-
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based feature extraction approach for motor imagery classification
[27].

This paper shows how to apply Gaussian noise to improve the ac-
curacy of P300 and MI classification systems. The study uses Gaussian
noise although other types of noise such as uniform and Laplace noise
can also enhance the performance of BCI systems or other nonlinear
systems. For example uniform noise can increase the accuracy of P300
classification for BCI competition III subject A (σopt =0.1 μV and Nr
=14) from 95% to 95.30%. We use Gaussian noise to first show that
optimal level of noise can increase the performance of the system. Then
we show how optimization techniques such as particle swarm optimi-
zation (PSO) can find that optimal level.

Fig. 1 shows an example of the stochastic resonance (SR) effect of a
P300 classification system. This SR effect is a phenomenon where noise
at appropriate intensity levels can enhance weak input signals [28–31].
The SR effect can also occur in array systems [14,32–35]. Patel and
Kosko show that noise can improve statistical signal detection for array-
based nonlinear correlators in Neyman-Pearson (NP) and maximum-
likelihood (ML) signal detection [33]. They also show that the noise
benefit rate improves in terms of the small-quantizer noise limit as the

number of array quantizers increases.
Noise enhanced hypothesis testing is studied in the restricted NP

criterion [36]. Bayram et al. show that the optimal additive noise can be
represented by a discrete random variable with a certain number of
point masses. Liu et al. show a noise enhanced model in the binary
hypothesis testing, where the optimal additive noise is added to in-
crease the detection probability PD and decrease the false alarm prob-
ability PFA [37]. Zhang et al. present array-enhanced logical stochastic
resonance, where increasing the number of arrays can extend the range
of the optimal parameter domain in which a reliable logic output can be
obtained [35].

The next section describes the brain-computer interface (BCI)
paradigms. Section III discusses the choice of the EEG classification
systems that we use to test the SR effect. The proposed system uses
arrays of ESVM classification systems [14,17,18] with additive Gaus-
sian noise in the training phase and in the testing phase (or in actual
use). The final section shows the extensive experimental results on the
BCI competition II dataset IIb (P300) and dataset III (MI) [38,39] and
the BCI competition III dataset II (P300) and dataset IIIa (MI) [40].
Then, we show that particle swarm optimization (PSO) [41–43] can

Fig. 1. Noise enhances the accuracy of P300 classification. The system is tested on the BCI competition III (B) dataset using =N 14r signal repetitions and 64
channels. We repeat each test 30 times and show the average. (a) The system uses an array of ESVM classifiers with =N 20a stages. The vertical dashed lines show the
variation in noise realizations. The system shows an optimal point at (approximately) ≈σ 1.3opt μV and a classification accuracy of 96.27%. Two-sample t-tests show
that there is noise benefit with p-value <0.001 for the noise intensity 0.4 μV ≤ σ ≤ 2.2 μV. (b) Classification accuracy increases as the number of stages Na increases.

Fig. 2. The channel assignment numbers based on
the international 10–20 system (64 channels) and the
nomenclature of the positions. The red circles corre-
spond to the 3 channels for recording the MI signals.
The green circles correspond to the 14 channels of
the Emotiv Epoc headset. (For interpretation of the
references to colour in this figure legend, the reader
is referred to the Web version of this article.)

R. Sampanna, S. Mitaim Informatics in Medicine Unlocked 12 (2018) 88–97

89



search for the optimal noise intensity.

2. BCI paradigms

BCI systems interpret one or more brain activity patterns in EEG
signals [5]: SCP, P300, SSVEP, and MI. Fig. 2 shows the 64 channel
assignments based on the international 10–20 system [39,44], the
corresponding 3 channels for MI signals, and an example of a com-
mercial EEG acquisition device, such as the 14-channel Emotive Epoc
headset [45]. Below we briefly discuss the EEG signals from interna-
tional databases for P300 speller paradigm and MI paradigm [38,40].

Table 1 gives descriptions of a P300 dataset recorded from 64
electrodes, as shown in Fig. 2, using a 240-Hz sampling rate and 0.1–60-
Hz filter. Each dataset represents a set of characters where each char-
acter was repeated 15 times ( =N 15r signal repetitions) to reinforce the
P300 responses [38–40]. We denote the datasets A, B, and C for the BCI
competition III dataset II (Subject A), BCI competition III dataset II
(Subject B), and BCI competition II dataset IIb (Subject C).

Table 2 gives descriptions of the dataset of MI paradigm, which
consists of 2 classes (right hand movement and left hand movement).
There are 346 training trials and 340 testing trials that record from 3
electrodes (C3,Cz,C4) with a 128-Hz sampling rate and 0.5–30-Hz filter
for BCI II dataset III [38] and 64 electrodes with a 250-Hz sampling rate
and 1–50-Hz filter for BCI III dataset IIIa [40].

3. EEG classification systems

We propose a “noisy” EEG classification system, as shown in Fig. 3,
for both P300 classification and MI classification systems. The

classification system is an array of conventional classification systems
with additive noise. The array system consists of Na identical systems or
stages of P300 or MI classification systems as shown in Fig. 3. Each
stage processes the same filtered signal ′x of the raw EEG data x that are
obtained from the sensors. Then, each stage adds independent noise ni
to the signal ′x to obtain the noise-added signal ″x i: ″ = ′ +x x ni i, where
ni is independent Gaussian noise with identical pdf at stage i. Other
noise densities can also enhance the BCI systems or other nonlinear
systems [28–31]. Training the system with known (labeled) data gives
us (local) optimal parameters to use in the actual EEG signal classifi-
cation system (or the testing phase). In practice, the training phase can
be performed in advance or before each session.

3.1. ESVM classifier

We use an ESVM as a classifier since ESVMs combine several sup-
port vector machines (SVM) classifiers to solve problems associated
with signal variations between subjects and over time [18]. An SVM
classifier training process needs to find an optimal hyperplane that
separates two classes with the largest possible margin in order to in-
crease the performance of the classifier for the unknown data (testing
data). In the training phase, we divide the training dataset x{ } into M
clusters. Then, we train the kth SVM classifier with the data cluster kth to
obtain the respective weights wkj, bias bk, Lagrangian multipliers αkj,

= +K E x E x( , ) ( 1)kj kj kj
T n is the polynomial kernel function, n is the de-

gree of a polynomial, and support vectors Ekj, = …j L1,2, , k, where Lk is
the number of support vectors of the kth classifier. The output of an SVM
classifier for input data x is as follows:

⎜ ⎟
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for = …k M1, , . In this work we use =n 3.
Both the P300 and MI paradigms imply a two-class classification

problem with class labels ∈ −y { 1,1}i : P300 as “present” and “absent”
and MI as “left” or “right”. Thus, the output of the ESVM classifier is a
sign of the sum of M SVM classifiers:
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We test the classifier with different numbers of clusters and signals,
as shown in Table 3. We use the best cluster number M that leads to the
highest accuracy to examine the noise benefits.

3.2. P300 signal features

We use the EEG signal x in the time window of 0–667ms after the
stimulus [18]. The signal passes through a 0.1–20-Hz bandpass filter to
obtain ′x . Then we use amplitudes of ′x as features. Thus the di-
mensionality of feature space is 896. For SR effect, we add Gaussian
noise n to ′x before the feature extraction. The noise intensity varies
from 1 μV to 10 μV.

P300 classification uses samples of EEG signal x t( ) from all channels
as features. We examine the array of Na ESVM classifiers. We also vary
the signal repetitions Nr from 1 to 15. The character prediction process
considers the row (r) and column (c) that have the highest scores from
different signal repetitions and sum up the scores of ŷ from corre-
sponding rows and columns as follows [18]:

∑=
≤ ≤ =

c
N

yarg max ˆ
i e

r

ie
1 6 1 (3)
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≤ ≤ =

r
N

yarg max ˆ
i e

r

ie
7 12 1 (4)

where ∈ …c {1,2, ,6} and ∈ …r {7,8, ,12} are the column and row numbers

Table 1
Dataset of P300 Speller paradigm.

Dataset Number of Number of Signals

Characters Target Non-target All Stimulus

BCI IIIA (A)
Training: 85 2550 12,750 15,300
Testing: 100 3000 15,000 18,000
BCI IIIB (B)
Training: 85 2550 12,750 15,300
Testing: 100 3000 15,000 18,000
BCI II (C)
Training: 42 1260 6300 7560
Testing: 31 930 4650 5580

Table 2
Dataset of MI paradigm.

Dataset Number of Number of Signals

Trials Left Hand Right Hand

Movement Movement

BCI II (III)
Training: 140 70 70
Testing: 140 70 70

BCI III (IIIa): Subject l1b
Training: 60 30 30
Testing: 60 30 30

BCI III (IIIa): Subject k3b
Training: 90 45 45
Testing: 84 41 43

BCI III (IIIa): Subject k6b
Training: 56 28 28
Testing: 56 29 27
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that have the highest scores and =N 15r is the number of signal re-
petitions.

3.3. Motor imagery signal features

Fig. 4 shows the electrode positions and feature extraction process.
We compute the instantaneous powers =P xt t

2 of the EEG signal xt
during 3–9 s after the order of the left and right cue onset [38,40,46]
and use them to obtain the coefficients of the discrete wavelet trans-
form with Daubechies 4 (db4) coefficients [47]. We obtain 18 wavelet
coefficients from the 0–1 Hz frequency band [47]. We use the difference
in the approximation coefficients of electrode C3 (A C6 3) and C4
(A C6 4): = −DCA A C A C6 6 3 6 4. We also obtain the coefficients of the
6th -order AR model [48] from the 3–9 s duration of the EEG signals ′x .
We use the AR coefficients of two electrodes (C3 and C4).

Thus, the features for each MI signal consist of 18 wavelet coeffi-
cients (DCA6) and 12 AR coefficients (ARC3 =6 features and ARC4
=6 features). The ESVM uses these 30 features Cx for classification as
follows:

= ⋯ ⋯ ⋯C DCA DCA ARC ARC ARC ARC[ 6 , , 6 , 3 , , 3 , 4 , , 4 ]x 1 18 1 6 1 6 (5)

3.4. Optimal noise search

Optimal noise intensity depends on the characteristics of signal
systems and the classification systems, such as features, classifiers,
number of signal repetitions, and number of stages in the array.
Determination of the optimal noise level requires solving a complex
optimization problem. We can consider selected parameters of the noise
pdf and test several realizations to observe the trend and approximate
the optimal noise parameter, such as the standard deviation, as shown
in Fig. 1.

Many optimization techniques can find a local solution: simulated
annealing, genetic algorithm, ant colony optimization, fuzzy optimi-
zation and PSO [41–43]. Here, we show how PSO can search for op-
timal noise intensity or standard deviation σ. Since PSO is the fast and
effective optimization technique for resolving complex optimization
problem [41–43]. The objective function of the ESVM method is to
maximize the classification accuracy PA subject to the noise intensity σ
between the lower bound σl and upper bound σu [41–43]:

≤ ≤P σ σ σ σMaximize ( ) subject to .A l u (6)

4. Experimental results

We test the proposed system with EEG data from the BCI competi-
tion II dataset IIb (P300) and dataset III (MI) [38,39] and the BCI
competition III dataset II (P300) and dataset IIIa (MI) [40]. We use an
original classification system as a building block for an array system, as
shown in Fig. 3. Then, we add Gaussian noise with the standard de-
viation σ to the original signal data ′x . The noise in each block is in-
dependent of that in the others. We also examine the SR effects with
three options of noise additions:

Case 1: Adding noise in the training phase.
Case 2: Adding noise in the testing phase.
Case 3: Adding noise in the training and testing phases.

Fig. 3. A diagram of the proposed noisy array of the ESVM classifications systems for P300 and MI classification.

Table 3
Numbers of clusters used in the classification of the P300 and MI datasets.

Dataset # Clusters # Signals Total number

(M) per cluster of signals

P300
BCI III dataset II subject A 17 5 85
BCI III dataset II subject B 17 5 85
BCI II dataset IIb 8 5 40
MI
BCI II dataset III 5 28 140
BCI III dataset IIIa subject l1b 3 20 60
BCI III dataset IIIa subject k3b 3 30 90
BCI III dataset IIIa subject k6b 4 14 56

Fig. 4. Electrode positions (C3, Cz, C4) and feature extraction process for MI.
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Then, we calculate the classification accuracy PA as a ratio of the
number of correct classification outputs NC and the total number of
testing characters NT in the experiment:

= ×P N
N

100%A
C

T (7)

In general, the classification accuracy may vary with noise realiza-
tions. We repeat each test for 30 times and find the average to de-
termine the system performance PA.

We tested the system using the following steps:
Step 1: Preprocessing and feature extraction. Use bandpass filtering

and other feature extraction such as discrete wavelet transform.
Step 2: ESVM classifier training. Divide the training dataset into M

clusters and use each cluster to train SVM classifier.
Step 3: Test for accuracy using three options of noise additions

mentioned above.

4.1. P300 classification

We vary the noise intensity σ from 0.1 μV to 10 μV in the training
phase and testing phase. We test the system based on 1 to 15 signal
repetitions. Fig. 1 (a) shows the SR effect (Case 3: Adding noise in
training and testing phase) of an array P300 classification system using
an ESVM with a number of stages =N 20a and a number of signal re-
petitions =N 14r . Fig. 5 shows the classification accuracy of datasets A,
B and C using different noise-adding strategies, e.g., Original version:

training and testing without noise versus Case 1- Case 3. The accuracy
of a noise-added system is higher than the system without noise in all
cases.

Fig. 1 (b) shows that the classification accuracy improves with the
increasing number of stages =N 1,5,10a , and 20. The accuracy of this
system (regular ESVM classification with 14 signal repetitions and a
number of stages =N 1a ) increases when we add more stages and uses a
suitable level of noise intensity. The number of stages =N 20a gives the
maximum accuracy at 96.27% and gives 1.47% improvement over the
noiseless classification system at 94.80%. We use two-sample t-tests to
confirm that there is an increase of prediction accuracy or noise benefit:

>P σ P( ) (0)A A with p-value <0.001 for the noise intensity
≤ ≤μ σ μ0.4 V 2.2 V.

Table 5 shows the classification accuracy of the array systems based
on various numbers of signal repetitions Nr and array sizes Na. The
results show the maximum classification accuracy in each case with the
corresponding optimal noise intensity (μV). The classification accuracy
with noise is higher than that without noise in all cases. The results also
show that the classification accuracy tends to increase as the number of
stages Na increases from =N 1a to =N 10a . We obtain the maximum
accuracy values at 97.60% with optimal noise ( =σ 0.7opt μV) for

=N 10a and =N 15r signal repetitions, 98.00% with optimal noise
( =σ 1.3opt μV) for =N 5a and =N 15r signal repetitions, and 100% with
optimal noise ( =σ 3.5opt μV) for =N 5a and =N 4r signal repetitions for
datasets A, B and C, respectively.

Fig. 6 shows the noise benefits in the array system from the study of

Fig. 5. P300 classification for datasets A, B, and C using different noise-adding strategies, e.g., Original version (or Case 0): training and testing without noise, Case 1:
noise in the training phase, Case 2: noise in the testing phase, and Case 3: noise in the training and testing phases. The classification accuracy of Case 3 is the highest.
The experiments use noise intensities from 1 μV to 10 μV and plot the highest value for each repetition number.

Table 4
Classification accuracy of the test datasets for the MI classification system.

Dataset # Sets in Train without noise Train with noise σopt(μV) Increase −P PAn A (%)

training Test without Test with noise PAn (%) Test without Test with noise PAn (%)

phase Noise PA (%) Na =1 Na =5 Na =10 Noise PAn (%) Na =1 Na =5 Na =10

BCI II (III) 1 86.43 85.29 85.71 85.86 86.43 86.14 86.57 86.57
5 91.43 89.71 92.14 91.29 92.14 90.57 93.57 92.00
10 90.71 90.14 90.71 90.43 92.86 91.29 92.86 92.43
Max 92.86 90.14 92.86 92.00 92.86 91.43 93.57 92.71 0.003 7.14

BCI III (IIIa) Subject l1b 1 60.00 62.67 61.00 64.67 63.33 65.33 63.33 66.00
4 63.33 63.67 65.00 64.33 68.33 67.67 67.67 70.00
10 61.67 63.33 62.00 63.00 66.67 68.67 69.00 67.00
Max 63.33 64.33 65.00 65.00 68.33 68.67 69.33 70.00 0.02 10

BCI III (IIIa) Subject k3b 1 55.95 56.19 56.43 56.67 59.52 60.48 59.52 57.38
5 54.76 55.71 56.19 56.43 59.52 59.52 58.33 60.24
10 54.76 56.19 56.43 56.19 59.52 60.00 61.90 60.71
Max 57.14 57.14 57.38 57.14 60.71 60.71 61.90 60.71 0.08 5.95

BCI III (IIIa) Subject k6b 1 51.79 51.79 51.79 51.79 51.79 51.79 51.79 51.79
6 48.21 51.79 51.43 50.00 55.36 58.57 58.93 61.43
10 51.79 52.50 52.50 52.86 57.14 57.86 60.36 57.14
Max 55.36 56.79 56.79 57.86 60.71 60.71 61.07 61.43 0.1 9.64

The significance of bold in the table is the intra-subject test and the number of repetitions (Reps Nr) correspond to the maximum accuracy.
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the four cases (testing dataset of BCI competition III (A)). Fig. 6(a–c)
show that the accuracy of the classification in each case increases as the
signal repetitions and the number of stages Na increase. Fig. 6(d–f)
show four noise-added cases with 1, 10 and 20 stages, respectively. The
accuracy of Case 3 is higher than the accuracy in the other cases. The
system shows that the optimal noise can benefit from finding the best
classifier in training phase and can achieve the collective noise benefits
of the array system in the testing phase.

4.2. Motor imagery classification

We vary the noise intensity σ from 0.0001 μV to 0.1 μV in the
training phase and testing phase. The number of stages Na also varies:
Na =1, 5, and 10.

There are relatively few signals in the datasets. Thus, we con-
catenate the original dataset with m noise-added datasets in the training
phase. Consequently, the total number of signals is = +K m K( 1)d ,
where =K 140 is the number of original data signals. We test several
quantities ( = …m 0, ,9) of noise-added datasets.

Table 5
Classification accuracy of the test datasets for multi-user experiments (64 channels): P300 Classification using an ESVM.

Training set Testing set Reps Nr Train without noise Train with noise σopt (μV) Increase −P PAn A(%)

Test without Test with noise PAn (%) Test without Test with noise PAn (%)

noise PA (%) Na =1 Na =5 Na =10 noise PAn (%) Na =1 Na =5 Na =10

A A 14 95.00 94.60 95.40 95.80 93.00 94.80 94.80 95.00
15 95.00 95.40 97.20 97.40 97.00 95.20 96.40 97.60
Max 95.00 95.40 97.20 97.40 97.00 95.20 96.40 97.60 0.7 2.60

B B 12 95.00 96.40 97.20 97.60 96.00 96.60 97.20 97.60
15 96.00 96.80 97.40 97.60 98.00 97.80 98.00 98.00
Max 96.00 96.80 97.40 97.60 98.00 97.80 98.00 98.00 1.3 2.00

C C 4 96.77 98.71 98.06 99.35 100 99.35 100 100
15 100 100 100 100 100 100 100 100
Max 100 100 100 100 100 100 100 100 3.5 0

A,B A 10 76.00 78.20 80.20 80.40 76.00 79.00 80.20 77.40
15 90.00 91.40 92.60 92.60 91.00 90.80 93.40 93.60
Max 90.00 91.40 92.60 92.60 91.00 90.80 93.40 93.60 0.91 3.60

B 11 96.00 96.60 96.40 96.00 95.00 96.00 96.40 96.40
12 96.00 97.80 98.00 98.00 97.00 97.60 98.00 98.00
15 95.00 96.20 96.00 95.80 94.00 97.60 97.60 97.40
Max 96.00 97.80 98.00 98.00 97.00 97.60 98.00 98.00 0.91 2.00

C 11 80.65 83.87 80.65 80.65 74.19 82.58 83.87 83.87
12 77.42 77.42 77.42 77.42 83.87 79.35 77.42 77.42
15 77.42 77.42 77.42 77.42 74.19 80.65 80.65 80.65
Max 80.65 83.87 80.65 0.00 83.87 82.58 83.87 83.87 0.91 7.10

B,C A 12 25.00 29.40 28.40 28.00 36.00 34.20 36.20 36.60
13 25.00 29.80 29.40 29.20 36.00 34.40 33.40 33.40
15 34.00 32.40 35.00 35.00 31.00 31.80 32.40 32.80
Max 34.00 32.40 35.00 35.00 36.00 34.40 36.20 36.60 0.84 2.60

B 12 97.00 97.60 98.00 98.00 95.00 97.20 98.00 97.80
14 96.00 97.20 97.00 96.80 96.00 98.20 98.60 98.60
15 96.00 97.40 98.00 97.80 98.00 97.00 97.40 97.20
Max 97.00 97.60 98.00 98.00 98.00 98.20 98.60 98.60 0.84 1.60

C 9 87.10 87.10 87.10 87.10 100 100 100 100
10 96.77 96.77 96.77 96.77 96.77 96.77 96.77 96.77
15 96.77 96.77 96.77 96.77 90.32 96.77 96.77 96.77
Max 96.77 96.77 96.77 96.77 100 100 100 100 0.84 3.23

A,C A 14 93.00 91.80 93.60 94.20 87.00 90.80 93.80 93.20
15 93.00 93.20 96.00 96.20 94.00 92.80 96.00 96.40
Max 93.00 93.20 96.00 96.20 94.00 92.80 96.00 96.40 1.36 3.40

B 13 31.00 33.20 35.60 36.00 43.00 42.20 43.40 44.00
14 42.00 41.20 42.80 42.40 40.00 45.40 47.20 46.80
15 38.00 38.80 41.20 40.00 34.00 45.60 47.80 48.20
Max 42.00 41.20 42.80 42.40 43.00 45.60 47.80 48.20 0.96 6.20

C 8 96.77 96.77 96.77 96.77 93.55 95.48 100 94.19
13 96.77 96.77 96.77 96.77 100 100 100 100
15 96.77 96.77 97.42 98.06 93.55 95.48 100 98.06
Max 96.77 96.77 97.42 98.06 100 100 100 100 2.56 3.23

A,B,C A 14 83.00 86.20 88.80 88.20 84.00 87.80 91.40 91.40
15 86.00 86.60 90.20 90.20 88.00 88.80 91.40 91.20
Max 86.00 86.60 90.20 90.20 88.00 88.80 91.40 91.40 1.27 5.40

B 11 97.00 97.00 97.00 97.00 96.00 96.40 96.60 96.00
12 96.00 97.60 97.60 97.80 97.00 97.80 98.00 97.40
15 94.00 97.00 96.80 97.00 98.00 97.00 97.40 98.20
Max 97.00 97.60 97.60 97.80 98.00 97.80 98.00 98.20 0.96 1.20

C 9 87.10 89.03 88.39 87.74 93.55 90.32 90.32 96.77
10 87.10 88.39 88.39 89.03 96.77 94.84 96.13 96.77
12 96.77 96.77 96.77 96.77 96.77 96.77 96.77 96.77
15 96.77 96.77 96.77 96.77 96.77 96.77 96.77 96.77
Max 96.77 96.77 96.77 96.77 96.77 96.77 96.77 96.77 1.27 0

The significance of bold in the table is the intra-subject test and the number of repetitions (Reps Nr) correspond to the maximum accuracy.
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Fig. 7 shows an example of the SR effect on the MI classification
system. Table 4 shows how array SR can increase the classification
accuracy of an MI classification system. The classifier attained max-
imum accuracy at 93.57% for BCI II (III) ( =σ 0.003opt μV, =N 5a ), 70%
for BCI III (IIIa) Subject l1b ( =σ 0.02opt μV, Na =10), 61.90% for BCI III
(IIIa) Subject k3b ( =σ 0.08opt μV, Na =5), and 61.43% for BCI III (IIIa)
Subject k6b ( =σ 0.1opt μV, =N 10a ). The results imply that the addition
of an appropriate amount of noise in both the training and testing
phases can provide the highest accuracy with a proper number of stages
Na.

4.3. Feature analysis

Fig. 8 shows scatter plots of two features (DCA68 and DCA69) of MI
signal features. Blue and magenta markers are the features of right and

left hand movements, respectively. Pentagram markers are features
from original data. Diamond markers is the features from noise-added
data with σ=0.1. Solid markers are centroids of the respective data
clusters. Centroids of features of noise-added data change from centroid
of original data as a result of the original data are added with noise. The
distance between centroids of two classes is expanded from 0.089 to
0.092. This possibly leads to improved separation of ESVM classifica-
tion. The accuracy increases from 92.14% to 93.45%.

As expected, the optimal noise intensity (σopt) can produce the sig-
nificantly effect to the parameters of the polynomial kernel functions,
which leads to improve the classification accuracy. We analyze with the
motor imagery classification (for BCI II (III)) with optimal noise in-
tensity ( =σ 0.003opt μV) The result shows that the number of support

Fig. 6. Noise benefit in an array system of P300 (testing dataset of BCI competition III (A)). (a) Case 1: Adding noise in the training phase. (b) Case 2: Adding noise in
the testing phase. (c) Case 3: Adding noise in the training and testing phases. (d–f) Four noise-added cases with =N 1a , 10 and 20 stages, respectively. The results
show that the accuracy of Case 3 is the highest and that the accuracy also increases with the number of stages Na.

Fig. 7. Noise enhances the accuracy of MI classification. The system is tested on
the BCI competition II (III) dataset using 5 sets of noise-added data. The noise
intensity (standard deviation σ) varies from 0.0005 μV to 0.1 μV. The system
uses an array of ESVM classifiers with =N 20a stages.

Fig. 8. The scatter plots of two features (DCA68 and DCA69) of MI signal fea-
tures. Blue and magenta markers are features of right and left hand movements
respectively. Pentagram markers are features from original data. Diamond
markers are features from noise-added data with =σ 0.1. Solid markers are
centroids of the respective data clusters. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this
article.)
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vector decrease from 46 to 40 and the margin between two parallel
hyperplanes is expanded from 0.3556 to 0.3680. The effect reduces the
number of misclassified samples from 47 to 41. We use two-sample t-
tests to confirm that there is an increase of margin: Mean of margin
with noise is greater than mean of margin without noise with p-value
<0.001 for the noise intensity 0.003 μV.

4.4. Optimal noise intensity search using PSO: P300 classification

We can test the system using different noise intensity σ values to
approximate the optimal noise level σopt. PSO can also search for the
optimal noise intensity using the following steps [41–43]:

Step 1 Define the number of particles =q 5. Note that more particles
can give better results, but they require more search time.

Step 2 Randomly generate initial particles σi
0, = …i q1, , , in the range

=σ σ( , ) (0.01, 10)l u .
Step 3 Compute the ESVM classification accuracy PA (objective func-

tion value) at σi
0 as P σ( ),A 1

0 …P σ P σ( ), , ( )A A q2
0 0 .

Step 4 Set the initial velocity of each particle vi
0 to zero. Set the itera-

tion number to =k 1.
Step 5 Obtain the personal best values σi

lbest that give the highest value
of the objective function P σ( )A i

j from the ith particle in all pre-
vious iterations = …j k1, , , and obtain the global best value
σgbest that gives the highest value of the objective function P σ( )A i

j

from all particles = …i q1, , in all previous iterations = …j k1, , .

=
≤ ≤

σ P σarg max ( )i
lbest

j k
A i

j

1 (8)

=
≤ ≤ ≤ ≤

σ P σarg max ( )gbest

j k j k
A i

j

1 ,1 (9)

Step 6 Compute the velocity +vi
k 1

Fig. 9. Optimal noise intensity σopt search using PSO. The P300 classification system uses a single ESVM classifier ( =N 12r and =N 20a ). PSO uses five noise intensity
σ values as particles in each iteration. The plots show the paths towards the optimal noise intensity.

Table 6
Classification accuracy of the test datasets (14 channels): P300 classification using ESVM.

Training set Testing set Reps Nr Train without noise Train with noise σopt (μV) Increase −P PAn A (%)

Test without Test with noise PAn (%) Test without Test with noise PAn (%)

noise Na =1 Na =5 Na =10 noise Na =1 Na =5 Na =10

PA (%) PAn (%)

A A 14 53.00 40.20 53.20 54.60 51.00 49.80 58.00 59.40
15 57.00 42.00 56.80 59.40 59.00 49.60 58.60 60.20
Max 57.00 42.00 56.80 59.40 59.00 49.80 58.60 60.20 1.8 3.20

B B 14 76.00 68.60 74.60 76.20 74.00 71.60 74.60 78.20
15 74.00 70.40 77.00 79.20 77.00 74.00 77.00 80.60
Max 76.00 70.40 77.00 79.20 77.00 74.00 77.00 80.60 1.0 4.60

C C 10 93.55 93.55 93.55 93.55 93.55 99.35 100 100
13 100 99.35 99.35 97.42 100 97.42 97.42 96.77
15 100 100 100 100 100 100 100 100
Max 100 100 100 100 100 100 100 100 5.5 0

The significance of bold in the table is the intra-subject test and the number of repetitions (Reps Nr) correspond to the maximum accuracy.

Fig. 10. Accuracy of P300 ESVM-classification using 14-channel (reduced)
datasets. The dotted lines and solid lines denote the accuracy of the systems
without noise and with noise, respectively. The results show that noise can
enhance the classification accuracy for any number of signal repetitions.
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= + − + −+v v α σ σ β σ σ( ) ( )i
k

i
k

i i
lbest

i
k

i
gbest

i
k1 (10)

where αi and βi are uniform (0,1) random numbers.

Step 7 Update the particles +σi
k 1

= ++ +σ σ vi
k

i
k

i
k1 1 (11)

Step 8 Evaluate the objective function at the current σi
k as

…P σ P σ P σ( ), ( ), , ( )A
k

A
k

A q
k

1 2 .
Step 9 Check the convergence of the PSO process. The process con-

verges when the positions of all particles converge to the same
solution (the same noise intensity). Thus, we obtain the (local)
optimal noise intensity σopt that provides the maximum accuracy
P σ( )A opt . In case the objective function values PA does not con-
verge, go to Step 5.

Fig. 9 shows how PSO searches for the optimal noise intensity σopt
for P300 classification. PSO creates noise intensity paths towards the
red circle, which represents the (local) maximum accuracy at 96.8%
with ≈σ 4.10998opt μV. In this instance, the accuracy from PSO is equal
to that from the direct search method. Both methods can give different
approximations of the optimal noise intensity due to the randomness of
the signals and PSO's higher resolution of σ as opposed to a pre-de-
termined (fixed) steps of σ in direct search.

The system can find the (local) optimal parameters of classifier for
each dataset. We obtain the (local) optimal noise intensity σopt that
provides the maximum accuracy P σ( )A opt .

4.5. Multiple-user experiments: P300 classification

The proposed method is tested on multiple users where we combine
datasets A, B, and C to explore its performance. We conduct both intra-
subject tests and inter-subject tests. Intra-subject tests train the system
with multiple-user datasets and test it with datasets from the same
subjects. Inter-subject tests train the system with multiple-user datasets
and test it with datasets from other subjects [49,50].

Xu et al. proposed an accuracy improvement of subject-specific
P300 classification with the incorporation of inter-subject information
[51]. This issue is important for the case of a small amount of training
data from the target subject. They propose a classifier calibration
strategy named weighted ensemble learning generic information
(WELGI) that uses both the intra-subject and inter-subject information
for building classifiers based on SVM and SWLDA. This research
achieves on the P300 classification and also can be applied to other BCI
paradigms. This paper shows how noise can improve the classifiers

using data from multiple users. Table 5 shows that the classification
accuracy of the intra-subject set and inter-subject set increases at op-
timal noise (σopt) level.

4.6. Channel reduction experiment: P300 classification

We also investigate the effectiveness of the algorithm in a simple
EEG signal acquisition device such as the Emotiv Epoc. The Emotiv
Epoc 14 positions are AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4,
F8, and AF4, as indicated by the green circles in Fig. 2 [45]. Note that
the 14 positions cover only the sides of the scalp, and thus, the signal
qualities are not as good as those of the signals obtained from 64
channels.

Table 6 and Fig. 10 show that the systems attain maximum accuracy
at 60.20% for dataset A ( =σ 1.8opt μV, =N 15r , =N 10a ), 80.86% for
dataset B ( =σ 1opt μV, =N 15r , =N 10a ), and 100% for dataset C
( =σ 5.5opt μV, =N 10r , =N 5a ). The results reveal that noise can en-
hance the classification accuracy for all 14-channel datasets.

4.7. Comparison with other methods

We compare the proposed method with other existing methods
[15,17,18,20,52,53] as shown in Table 7. The ESVM achieves 100%
accuracy for BCI competition II ( =σ 3.5opt μV, =N 5a , and =N 4r ),
97.60% for BCI competition III subject A ( =σ 0.7opt μV, =N 10a , and

=N 15r ), and 98.60% for BCI competition III subject B ( =σ 0.84opt μV,
=N 5a , and =N 14r ). The results show that proper noise can enhance

accuracy of the BCI systems in general.

5. Discussions and conclusions

Experimental results show that noise benefits the BCI systems in
many ways. Practical BCI systems may have limitations such as having
only access to small training data [1,2], the need for reduction of data
collection times (the number of signal repetitions) [15,17,18,20,52,53],
the restrictions on channel positions in commercial recording systems
[45], or accessibility for multiple users [6,7]. The proposed method
shows how Gaussian noise can help alleviate these issues. Adding noise
to the concatenated datasets can virtually increase the number of
training samples and can reduce the chance of over-fitting [2]. The
results also show that noise can enhance accuracy of BCI systems for
any number of signal repetitions. This implies that we can reduce the
number of signal repetitions or the collection time and so can speed up
the responses with high accuracy.

Noise can also enhance the accuracy of the system using multiple-

Table 7
Comparison of the P300 classification accuracy of the proposed methods and existing methods.

Methods BCI II BCI III (A) BCI III (B)

Number of signal Number of signal Number of signal

repetitions repetitions repetitions

1 5 10 15 1 5 10 15 1 5 10 15

Existing methods
ICA [15] (64 ch) – 100 100 100 – – – – – – – –
SVM [17] (10 ch) 64.5 100 100 100 – – – – – – – –
Gradient boosting [52] (10 ch) 71 100 100 100 – – – – – – – –
ESVM [18] (64 ch) – – – – 16 72 83 97 35 75 91 96
CNN-1 [20] [64 ch] – – – – 16 61 86 97 – 79 91 92
MCNN-1 [20] (64 ch) – – – – 18 61 82 97 – 77 92 94
RF [53] (64 ch) – – – – – 73.80 89.00 97.30 – 80.32 92.30 98.41
Proposed method (PSO)
ESVM 81.94 100 100 100 28.00 69.00 92.00 97.60 45.00 85.00 98.00 98.60
SVM 39.68 90.11 96.77 100 21.00 57.00 85.00 96.00 44.00 78.00 97.00 97.00

The significance of bold in the table is the intra-subject test and the number of repetitions (Reps Nr) correspond to the maximum accuracy.
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user datasets in the training phase. The noise-added system still per-
forms well when another subject uses the system. This indicates that we
can apply the system to process signals from multiple users such as BCI-
based gaming applications [6,7]. The results on the reduced and re-
stricted positions of commercial recording systems, such as the 14-
channel Emotiv Epoc headset, also show the proposed algorithm can
improve detections of weak signals.

The use of an array system can increase accuracy in all situations
[28,30–35]. Independent noise in each stage collectively benefit the
array of BCI systems during the training and testing. The use of particle
swarm optimization (PSO) [41–43] shows how optimization algorithms
can search for the (local) optimal noise parameter σopt.

These collective noise benefits suggest that future research should
consider the role of noise addition in system design as well as in actual
use. The appropriate noise intensity depends on the characteristics of
signal and the classification systems, such as features, classifiers,
number of signal repetitions, and number of stages in the array. Many
types of noise pdf such as uniform, Gaussian, Laplacian noise, and other
noise pdfs can enhance the performance of BCI systems or other non-
linear systems [28–31]. Finding the optimal noise pdf in each stage as
well as how they are related to maximize the performance of BCI or
other nonlinear systems still remains an open research problem.
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