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We show that the main forbidden interval theorems of stochastic resonance hold for a correlation performance
measure. Earlier theorems held only for performance measures based on mutual information or the probability
of error detection. Forbidden interval theorems ensure that a threshold signal detector benefits from deliberately
added noise if the average noise does not lie in an interval that depends on the threshold value. We first show that
this result holds for correlation for all finite-variance noise and for all forms of infinite-variance stable noise. A
second forbidden-interval theorem gives necessary and sufficient conditions for a local noise benefit in a bipolar
signal system when the noise comes from a location-scale family. A third theorem gives a general condition for a
local noise benefit for arbitrary signals with finite second moments and for location-scale noise. This result also
extends forbidden intervals to forbidden bands of parameters. A fourth theorem gives necessary and sufficient
conditions for a local noise benefit when both the independent signal and noise are normal. A final theorem
derives necessary and sufficient conditions for forbidden bands when using arrays of threshold detectors for
arbitrary signals and location-scale noise.
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I. FORBIDDEN INTERVAL THEOREMS
FOR CROSS CORRELATION

We show that “forbidden interval” theorems (FITs) hold for
a cross-correlation performance measure. These correlation
noise benefits also extend to arrays of threshold neurons.
Earlier results found similar noise benefits only for mutual
information [1–6] or probability of error [7]. We have found
experimental evidence of both correlation-based and bit-error-
based noise benefits for carbon nanotube detectors [8,9] when
testing a FIT prediction of a mutual-entropy-based noise
benefit in a threshold detector. Other stochastic resonance (SR)
results have used a correlation performance measure to demon-
strate a noise benefit [10–12] but not as a FIT. Moskowitz has
recently extended FITs to algebraic information theory [13].

A forbidden interval theorem states a sufficient or necessary
condition for a nonlinear signal system to benefit from added
noise so long as the average noise does not fall in an interval
of parameter values. A FIT acts as a type of screening device
for a nonlinear system because it tells the user whether the
system can have a noise benefit at all. This screening effect
also holds for the related necessary and sufficient inequalities
that ensure a noise benefit based on maximum likelihood or
Neyman-Pearson signal detection [14]. Adaptive algorithms or
other schemes can then find the optimal noise level in systems
that possess noise benefits [3,11,21]. The first FITs applied
only to nonlinear signal systems that used mutual information
as the performance measure [1,3]. Corollary 1 in Ref. [7] was a
necessary-condition FIT based not on mutual information but
on the probability of detection error. All FITs give rigorous
conditions for a noise benefit or SR [1–3,7,11,14–23]. This
paper extends correlation-based SR to threshold systems and
threshold arrays that obey quantitative FITs. These threshold
systems model threshold-like behavior in a wide range of
physical and biological systems [18,24–28].

Theorem 1 below gives a direct correlation FIT dual of
our earlier mutual-information FIT for threshold signals. It

holds for all possible additive noise that has a finite variance.
It further holds for all infinite-variance noise from the general
stable family of probability density functions that includes
Cauchy and Gaussian noise as special cases. Non-Gaussian
stable noise does not have a mean but it does have a location
parameter that acts like the mean and that equals the median
if the stable noise is symmetric. The FIT holds in the stable
case for noise whose location parameter does not lie in the
forbidden interval. This first correlation FIT produces total SR
in the sense that added noise achieves the correlation maximum
for the threshold system.

Figure 1 shows a simulation instance of Theorem 1. We
converted the binary yin-yang image to a bipolar image with
amplitude A and used it as input to the threshold system (1).
The threshold θ is 1 while the bipolar signal amplitude A is 0.7.
This gives the forbidden interval (θ − A,θ + A) = (0.3,1.7).
The uniform noise mean μN is 2. So there is a noise benefit
because μN /∈ (0.3,1.7). The second panel uses uniform noise
with mean μN = 1. So there is no noise benefit because the
noise mean falls in the forbidden interval (0.3,1.7).

Theorem 2 gives a new type of correlation FIT for partial
SR or a local noise benefit as in [7,14,23]. The FIT gives
necessary and sufficient conditions for a positive correlation
derivative with respect to the standard deviation σN of the
added noise N : ∂C

∂σN
> 0. The signal system is a more complex

bipolar signal system but the FIT applies only to noise that
comes from a location-scale family. Location-scale family
noise includes many common types of noise such as uniform,
Gaussian, and α-stable noise. It does not include Poisson
noise.

The next section describes the stochastic threshold signal
system and the basic properties of the cross-correlation perfor-
mance measure. Section II states and proves the correlation FIT
of Theorem 1 for finite-variance noise and for infinite-variance
stable noise. Section III sets up and proves the local correlation
FIT of Theorem 2 for location-scale noise and bipolar signals.
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FIG. 1. (Color online) Forbidden-interval noise benefit in a subthreshold signal system (1) that uses the bipolar yin-yang image as its
input. The threshold θ is θ = 1. The bipolar signal has amplitude A = 0.7. Top panels: The noise is uniform with mean μN = 2. So the mean
does not lie in the forbidden interval (θ − A,θ + A) = (0.3,1.7). Thus the correlation system benefits from added noise and the correlation
curve shows the signature nonmonotonic inverted U of a global SR noise benefit. The optimal noise is approximately σ ∗

N ≈ 0.98. Bottom
panels: The noise is uniform with mean μN = 1. So the mean lies in the forbidden interval (θ − A,θ + A) = (0.3,1.7). Thus there is no noise
benefit.

The final sections extend the correlation FITs to different noise
and signal types and to arrays of detectors.

II. CROSS CORRELATION IN A STOCHASTIC
THRESHOLD DETECTOR WITH SUBTHRESHOLD

BIPOLAR INPUT SIGNALS

This section describes the stochastic threshold signal
system and introduces the performance measure of cross
correlation. Consider the standard discrete-time threshold
signal detector [2,3,11,15,17,18,21,29,30],

Y = sgn(S + N − θ ) =
{

1 if S + N � θ

−1 if S + N < θ
. (1)

Here θ > 0 is the system’s threshold. We assume that the
additive noise N is white with the probability density function

(pdf) fN (n). This white-noise assumption does not limit the
FIT analysis. The same system analysis applies to other
types of noise with correlation functions RN (τ ) because these
threshold systems are feedforward systems and thus have
no dynamics. We consider bipolar input Bernoulli signal S

with arbitrary success probability p such that 0 < p < 1 with
amplitude A > 0. Thus the signal’s pdf has the form

fS(s) = pδ(s + A) + (1 − p)δ(s − A), (2)

where δ denotes the Dirac δ function.
We assume subthreshold input signals for this threshold

system: A < θ . The output Y of the threshold system exactly
matches the input signal S when A > θ and so there is no noise
benefit. Let the symbol “0” denote the input signal S = −A

and output signal Y = −1. The symbol “1” denotes the input
signal S = A and output signal Y = 1. Then the conditional
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probabilities PY |S(y|s) are

PY |S(0|0) = Pr{S + N < θ}|S=−A, (3)

= Pr{N < θ + A}, (4)

=
∫ θ+A

−∞
fN (n)dn = FN (θ + A), (5)

PY |S(1|0) = 1 − PY |S(0|0) = 1 − FN (θ + A), (6)

PY |S(0|1) = Pr{S + N < θ}|S=A, (7)

=
∫ θ−A

−∞
fN (n)dn = FN (θ − A), (8)

PY |S(1|1) = 1 − PY |S(0|1) = 1 − FN (θ − A), (9)

where FN (z) is the cumulative distribution function (cdf) of
N . The marginal density PY is

PY (y) =
∑

s

PY |S(y|s)PS(s) (10)

by the theorem on total probability.
Other researchers have derived the conditional probabilities

PY |S(y|s) of the threshold system with Gaussian noise with
bipolar inputs [15] and Gaussian inputs [31]. We neither
restrict the noise density to be Gaussian nor require that the
density have finite variance even if the density has a bell-curve
shape.

We use cross correlation to measure the noise benefit or
the SR effect. The cross correlation C of the input random
variable S and output random variable Y is the expectation of
the product of the two variables S and Y :

C = E[SY ] =
∑
s∈S

∑
y∈Y

syPSY (s,y), (11)

=
∑
s∈S

∑
y∈Y

syPY |S(y|s)PS(s). (12)

We can also use the respective cross covariance:

K = E[(S − μS)(Y − μY )] = C − μSμY , (13)

where μS = E[S] = ∑
s∈S sPS(s) and μY = E[Y ] =∑

y∈Y yPY (y). The cross correlation C and cross covariance
K can be any real number. But C � A for (1) with bipolar
signals A and −A since Y = 1 or Y = −1.

We next prove a lemma that allows a direct proof of
Theorem 1. The lemma states that the signal S and output Y

always have a lower-bounded correlation: C � μSμY . S and Y

are uncorrelated if and only if C = μSμY . And independence
implies uncorrelatedness. Then Theorem 1 states that the
noise mean μN = E[N ] does not lie in the “forbidden”
subthreshold interval (θ − A,θ + A) if and only if S and Y

are asymptotically independent (and thus C → μSμY ) as the
noise standard deviation σ → 0 for finite-variance noise (or
as the noise dispersion γ → 0 for α-stable noise with infinite
variance).

The lemma further shows that C > μSμY when the forbid-
den interval (θ − A,θ + A) has positive noise probability. The
case C = μSμY holds just when the forbidden interval has zero
noise probability. So the idea behind the proof of Theorem 1
is that what goes down must go up [1,2]: Increasing the noise
variance or dispersion must necessarily increase the correlation

C at some point. That increase is precisely an SR noise benefit.
So the entire proof of Theorem 1 rests on showing that the
forbidden interval has asymptotically zero noise probability as
the noise variance or dispersion shrinks to zero.

Lemma. The threshold system (1) has an input-output cross
correlation C that is at least μSμY : C � μSμY . Further: C >

μSμY if λ > 0 and C = μSμY if λ = 0, where λ is the noise
probability of the forbidden interval (θ − A,θ + A):

λ =
∫ θ+A

θ−A

fN (n)dn � 0. (14)

Proof. The cross correlation has the form

C =
∑
s∈S

∑
y∈Y

syPY |S(y|s)PS(s). (15)

Note that C = μSμY if S and Y are uncorrelated where

μSμY =
∑
s∈S

∑
y∈Y

syPS(s)PY (y). (16)

Thus (5)–(9) imply that

PY |S(0|0) − PY |S(0|1) =
∫ θ+A

θ−A

fN (n)dn = λ. (17)

PY |S(1|1) − PY |S(1|0) =
∫ θ+A

θ−A

fN (n)dn = λ. (18)

The two-symbol alphabet set S and the theorem on total
probability give

PY (y) =
∑

s

PY |S(y|s)PS(s), (19)

= PY |S(y|0)PS(0) + PY |S(y|1)PS(1), (20)

= PY |S(y|0)PS(0) + PY |S(y|1)(1 − PS(0)), (21)

= (PY |S(y|0) − PY |S(y|1))PS(0) + PY |S(y|1), (22)

= PY |S(y|0)(1 − PS(1)) + PY |S(y|1)PS(1), (23)

= PY |S(y|0) − (PY |S(y|0) − PY |S(y|1))PS(1). (24)

It follows from (17) and (18) that

PY (0) = PY |S(0|1) + λPS(0) � PY |S(0|1), (25)

PY (0) = PY |S(0|0) − λPS(1) � PY |S(0|0). (26)

We have similarly that

PY (1) = PY |S(1|0) + λPS(1) � PY |S(1|0), (27)

PY (1) = PY |S(1|1) − λPS(0) � PY |S(1|1). (28)

Thus

PY |S(y|s) � PY (y) if sy = A, (29)

PY |S(y|s) � PY (y) if sy = −A, (30)

since either y = 1 or y = −1. Then (29) and (30) imply that

syPS(s)PY |S(y|s) � syPS(s)PY (s), (31)

for all s ∈ {−A,A} and y ∈ {−1,1}. So summing gives C �
μSμY .

Suppose last that the noise pdf fN (n) has nonzero measure
in (θ − A,θ + A). Then λ > 0 and the inequalities (25)–(28)
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become strict inequalities as follows:

PY (0) > PY |S(0|1), (32)

PY (0) < PY |S(0|0), (33)

PY (1) > PY |S(1|0), (34)

PY (1) < PY |S(1|1). (35)

Then

C > μSμY and K > 0. (36)

Note that λ = 0 implies that fN (n) has zero mass in the interval
(θ − A,θ + A). Then

C = μSμY and K = 0. (37)

�

III. THE FIRST CORRELATION FORBIDDEN INTERVAL
THEOREM: THRESHOLD SYSTEMS WITH BIPOLAR

SUBTHRESHOLD SIGNALS

This section states and proves the first necessary and
sufficient condition for SR based on correlation in a threshold
system. The theorem holds for all noise with finite second
moments and all α-stable impulsive noise. Stable noise has
infinite variance if α < 2 but such noise still has finite
lower-order moments up to order α if α < 2. Gaussian noise
is stable with α = 2. Cauchy noise is stable with α = 1. A
general α-stable pdf f has characteristic function or Fourier
transform ϕ [32–36]:

ϕ(ω) = exp{iaω − γ |ω|α(1 + iβsgn(ω)
)}, (38)

where


 =
{

tan απ
2 for α �= 1

− 2
π

ln |ω| for α = 1
, (39)

and i = √−1, 0 < α � 2, −1 � β � 1, and γ > 0. The
parameter α is the characteristic exponent. The variance of an
α-stable density does not exist if α < 2. The location parameter
a acts like the “mean” of the density when α > 1. β is a
skewness parameter. The density is symmetric about a when
β = 0. Then α controls the tail thickness. The bell curve has
thicker tails as α falls. The theorem below still holds even
when β �= 0. The dispersion parameter γ = |κ|α acts like a
variance because it controls the width of a symmetric α-stable
bell curve where κ is the scale parameter. There are few
known closed forms of the α-stable densities for symmetric
bell curves (when β = 0) [34]. Numerical integration of ϕ

gives the probability densities f (n). Figure 2 gives examples
of α-stable pdfs and their white-noise realizations. Figure 2(c)
shows that non-Gaussian bell curves can have infinite variance
and yet have a finite dispersion.

Below we state the first noise-benefit theorem for the
threshold system (1) for any finite-variance noise and α-stable
noise. Note that when the noise standard deviation shrinks
to zero σN → 0 (or dispersion γN → 0) the pdf fN (n) →
δ(n − μN ), where μN is the noise mean [or fN (n) → δ(n − a)
for α-stable noise with location a] for delta pulse δ. The
lemma allows the proof of this noise-benefit theorem to turn
on showing that S and Y are asymptotically independent (and

thus asymptotically uncorrelated) as the noise probability of
the forbidden interval shrinks to zero.

Figure 1 illustrates the sufficient and necessary conditions
in Theorem 1 below for uniform noise added to a binary
yin-yang image. The first panel shows sufficiency: There is
a correlation noise benefit because the noise mean of 2 does
not fall in the forbidden interval (0.3,1.7). The second panel
shows necessity: There is no correlation noise benefit because
the lower-intensity noise has mean 1 and thus the mean falls
in the forbidden interval (0.3,1.7). The theorem’s necessity
result shows that the correlation maximum occurs when there
is no noise. It does not rule out possible local noise fluctuations
where a local increase in the noise intensity can produce a local
increase in correlation.

Theorem 1. Suppose that the threshold signal system (1)
has noise pdf fN (n) and that the input signal S is subthreshold
(A < θ ). Suppose that the noise mean μN = E[N ] does not lie
in the signal-threshold interval (θ − A,θ + A) if N has finite
variance. Suppose that a /∈ (θ − A,θ + A) for the location
parameter a of an α-stable noise density with characteristic
function (38). Then the threshold system (1) exhibits the
nonmonotone SR effect in the sense that C → μSμY as
σ → 0 or γ → 0. Conversely, there is no noise benefit in
C if μN ∈ (θ − A,θ + A) or a ∈ (θ − A,θ + A).

Proof. Sufficiency. Assume 0 < PS(s) < 1 to avoid triviality
when PS(s) = 0 or 1. The lemma implies that we need show
only that S and Y are asymptotically independent and so C →
μSμY as σ → 0 (or as γ → 0). So we need to show only that
PSY (s,y) = PS(s)PY (y) or PY |S(y|s) = PY (y) as σ → 0 (or
as γ → 0) for all signal symbols s ∈ S and y ∈ Y . Thus the
result follows (similarly to the proofs in Refs. [1,2] for mutual
information) if we can show that

λ =
∫ θ+A

θ−A

fN (n)dn → 0 as σ → 0 or γ → 0. (40)

Case 1. Finite-variance noise.
Let the mean of the noise be μN = E[N ] and the vari-

ance be σ 2 = E[(N − μN )2]. Then μN /∈ (θ − A,θ + A) by
hypothesis.

Now suppose that μN < θ − A. Pick ε = 1
2 (θ − A −

μN ) > 0. So θ − A − ε = θ − A − ε + μN − μN = μN +
(θ − A − μN ) − ε = μN + 2ε − ε = μN + ε. Then

λ =
∫ θ+A

θ−A

fN (n)dn, (41)

�
∫ ∞

θ−A

fN (n)dn, (42)

�
∫ ∞

θ−A−ε

fN (n)dn, (43)

=
∫ ∞

μN+ε

fN (n)dn, (44)

= Pr{N � μN + ε} = Pr{N − μN � ε}, (45)

� Pr{|N − μN | � ε}, (46)

� σ 2

ε2
by Chebyshev’s inequality, (47)

→ 0 as σ → 0. (48)
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FIG. 2. (Color online) Samples of symmetric α-stable probability densities and their white-noise realizations. (a) Standard symmetric
α-stable density functions with zero location (a = 0) and unit dispersion (γ = 1) for α = 2, 1.7, 1.5, and 1. The densities are bell curves that
have thicker tails as α decreases and thus that model increasingly impulsive noise as α decreases. The case α = 2 gives a Gaussian density
with variance two (or unit dispersion). The case α = 1 gives the Cauchy density with infinite variance. (b) White-noise samples of α-stable
random variables nt with zero location and unit dispersion. The plots show realizations when α = 2, 1.7, 1.5, and 1. Note the scale differences
on the y axes. The α-stable variable N becomes more impulsive as the parameter α falls and thus as the bell curves get thicker. The algorithm
in Refs. [37,38] generated these realizations. (c) α-stable density functions for α = 1.7 with dispersions γ = 0.5, 1, and 2. (d) Samples of finite
and infinite α-stable noise nt for α = 1.7 with finite dispersions γ = 0.5, 1, and 2.

Suppose next that μN > θ + A. Then pick ε = 1
2 (μN −

θ − A) > 0 and so θ + A + ε = θ + A + ε + μN − μN =
μN − (μN − θ − A) + ε = μN − 2ε + ε = μN − ε. Then

λ =
∫ θ+A

θ−A

fN (n)dn, (49)

�
∫ θ+A+ε

−∞
fN (n)dn, (50)

=
∫ μN−ε

−∞
fN (n)dn, (51)

= Pr{N � μN − ε} = Pr{N − μN � −ε}, (52)

� Pr{|N − μN | � ε}, (53)

� σ 2

ε2
by Chebyshev’s inequality, (54)

→ 0 as σ → 0. (55)

Case 2. α-Stable noise.
The characteristic function ϕ(ω) of α-stable density fN (n)

has the exponential form (38). This reduces to a simple
complex exponential in the zero-dispersion limit:

lim
γ→0

ϕ(ω) = exp{iaω} (56)

for each α, each skewness β, and each location a. So Fourier
transformation gives the corresponding density function in the
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limiting case (γ → 0) as a translated δ function:

lim
γ→0

fN (n) = δ(n − a). (57)

Then

λ =
∫ θ+A

θ−A

fN (n)dn, (58)

=
∫ θ+A

θ−A

δ(n − a)dn, (59)

= 0 because a /∈ (θ − A,θ + A). (60)

Then PY (y) = PY |S(y|s) as γ → 0.
Thus Cases 1 and 2 both imply that S and Y are

asymptotically independent and so they are asymptotically
uncorrelated: C = μSμY as σ → 0 for finite-variance noise
or as γ → 0 for α-stable noise.

Necessity. We show that the cross correlation C is maximum
(C → A) as σN → 0 (or γN → 0) if μN ∈ (θ − A,θ + A)
[or if a ∈ (θ − A,θ + A)]. Assume 0 < PS(s) < 1 to avoid
triviality when PS(s) = 0 or 1.

Case 1. Finite-variance noise.
We now show that PY |S(y|s) is either 1 or 0 as σN → 0.

Let the noise mean be μN = E[N ] and the variance be
σ 2

N = E[(N − μN )2]. Then again μN ∈ (θ − A,θ + A) by
hypothesis.

Consider PY |S(0|0). Pick ε = 1
2 (θ + A − μN ) > 0. So

θ + A − ε = θ + A − ε + μN − μN = μN +
(θ + A − μN ) − ε = μN + 2ε − ε = μN + ε. Then

PY |S(0|0) =
∫ θ+A

−∞
fN (n)dn, (61)

�
∫ θ+A−ε

−∞
fN (n)dn, (62)

=
∫ μN+ε

−∞
fN (n)dn, (63)

= 1 −
∫ ∞

μN+ε

fN (n)dn, (64)

= 1 − Pr{N � μN + ε}, (65)

= 1 − Pr{N − μN � ε}, (66)

� 1 − Pr{|N − μN | � ε}, (67)

� 1 − σ 2
N

ε2
by Chebyshev’s inequality, (68)

→ 1 as σN → 0. (69)

So PY |S(0|0) = 1 and PY |S(1|0) = 0.
Similarly for PY |S(1|1): Pick ε = 1

2 (μN − θ + A) > 0.
So θ − A + ε = θ − A + ε + μN − μN = μN + (θ − A −
μN ) + ε = μN − 2ε + ε = μN − ε. Then

PY |S(1|1) =
∫ ∞

θ+A

fN (n)dn, (70)

�
∫ ∞

θ−A+ε

fN (n)dn, (71)

=
∫ ∞

μN−ε

fN (n)dn, (72)

= 1 −
∫ μN−ε

−∞
fN (n)dn, (73)

= 1 − Pr{N � μN − ε}, (74)

= 1 − Pr{N − μN � −ε}, (75)

� 1 − Pr{|N − μN | � ε}, (76)

� 1 − σ 2

ε2
by Chebyshev’s inequality, (77)

→ 1 as σN → 0. (78)

So PY |S(1|1) = 1 and PY |S(0|1) = 0.
Case 2. α-Stable noise.
Again we have

lim
γ→0

fN (n) = δ(n − a). (79)

Then

PY |S(0|0) =
∫ θ+A

−∞
fN (n)dn, (80)

→
∫ θ+A

−∞
δ(n − a)dn = 1 as γ → 0. (81)

Similarly,

PY |S(1|1) =
∫ ∞

θ−A

fN (n)dn, (82)

→
∫ ∞

θ−A

δ(n − a)dn = 1 as γ → 0. (83)

The four conditional probabilities for both finite-variance and
infinite-variance cases imply that the cross correlation C → A

as σ → 0 (or γ → 0) since then (12) gives C = A(1)P (A) +
(−A)(−1)P (−A) = A. �

IV. A FORBIDDEN INTERVAL THEOREM FOR
LOCATION-SCALE NOISE AND BIPOLAR SIGNALS

This section derives necessary and sufficient conditions for
the local noise benefit ∂C

∂σN
> 0. Theorem 2 shows that this

takes the form of a correlation FIT and that the conditions
depend on the system parameters.

The signal system now is a threshold system with bipolar
signals and additive white noise N that has pdf fN (n) that
belongs to a location-scale family:

fN (n) = 1

σN

fÑ

(
n − μN

σN

)
(84)

with mean μN and variance σ 2
N . Thus the cdf is

FN (n) = FÑ

(
n − μN

σN

)
, (85)

where FÑ is the cdf of the standardized random variable
Ñ = N−μN

σN
. Note that we can replace the mean μN with

location parameter a and the standard deviation σN with
the scale parameter κ = γ 1/α for α-stable noise. Thus the
α-stable family belongs to the location-scale family for fixed
α and β. We can rewrite the pdf of any random variable
Y in terms of the pdf of the standard random variable
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X = (Y − a)/κ:

f (y; a,κ,α,β) = 1

κ
f

(
y − a

κ
; 0,1,α,β

)
, (86)

for fixed α and β. So the pdf f (y; a,κ,α,β) of an α-stable
random variable Y with location a and scale κ has the form

f (y; a,κ,α,β)

=
∫ ∞

−∞
exp{−ity + iat − |κt |α(1 + iβsgn(t)
)}dt. (87)

Let x = (y − a)/κ and τ = κt . Then

f (y; a,κ,α,β)

=
∫ ∞

−∞
exp{−it(xκ + a) + ita − |κt |α(1 − βsgn(t)
)}dt,

(88)

= 1

κ

∫ ∞

−∞
exp{−iτx − |τ |α(1 − βsgn(τ )
)}dτ, (89)

= 1

κ
f (x; 0,1,α,β) = 1

κ
f

(
y − a

κ
; 0,1,α,β

)
. (90)

The location-scale structure of the pdf and (5)–(9) give the
conditional pdf fY |S(y|s) as

fY |S(y|s) =
{

FÑ

(
θ−s−μN

σN

)
y = −1

1 − FÑ

(
θ−s−μN

σN

)
y = 1

, (91)

= FÑ

(
θ − s − μN

σN

)
δ(y + 1)

+
(

1 − FÑ

(
θ − s − μN

σN

))
δ(y − 1). (92)

Then the input-output cross correlation measure C = E[SY ]
of the threshold system (1) with bipolar signal S with
pdf fS(s) = pδ(s + A) + (1 − p)δ(s − A) and location-scale
noise N has the form

C = μS + 2pAFÑ

(
θ + A − μN

σN

)

− 2(1 − p)AFÑ

(
θ − A − μN

σN

)
. (93)

Suppose the cross correlation (93) is differentiable with
respect to σN . Theorem 2 below states the necessary and
sufficient condition for the partial noise benefit ∂C

∂σN
> 0 for

bipolar signal S and location-scale noise N .
Theorem 2. Suppose the signal S is bipolar with pdf

fS(s) = pδ(s + A) + (1 − p)δ(s − A). Suppose the location-
scale noise N has mean μN and variance σ 2

N with pdf
fN (n) = 1

σN
fÑ ( n−μN

σN
).

Necessity. The threshold system (1) does not have a local
noise benefit ∂C

∂σN
< 0 if μN ∈ (θ − A,θ + A).

Sufficiency. The threshold system (1) has a local noise
benefit ∂C

∂σN
> 0 if μN /∈ (θ − A,θ + A) and if the system

parameters satisfy inequalities (i) or (ii) as follows:

(i) μN > θ + A and

p

1 − p
>

(θ − A − μN )fÑ

(
θ−A−μN

σN

)
(θ + A − μN )fÑ

(
θ+A−μN

σN

) . (94)

or
(ii) μN < θ − A and

p

1 − p
<

(θ − A − μN )fÑ

(
θ−A−μN

σN

)
(θ + A − μN )fÑ

(
θ+A−μN

σN

) . (95)

Proof.

C = E[SY ] (96)

=
∫ ∞

−∞

∫ ∞

−∞
syfS,Y (s,y) ds dy (97)

=
∫ ∞

−∞
sfS(s)

∫ ∞

−∞
yfY |S(y|s) dy ds (98)

=
∫ ∞

−∞
sfS(s)

{
(−1)FÑ

(
θ − s − μN

σN

)

+ (1)

[
1 − FÑ

(
θ − s − μN

σN

)]}
ds (99)

=
∫ ∞

−∞
sfS(s)

[
1 − 2FÑ

(
θ − s − μN

σN

)]
ds (100)

=
∫ ∞

−∞
sfS(s)ds − 2

∫ ∞

−∞
sfS(s)FÑ

(
θ − s − μN

σN

)
ds

(101)

= μS − 2
∫ ∞

−∞
sfS(s)FÑ

(
θ − s − μN

σN

)
ds. (102)

The input-output cross correlation measure for the thresh-
old system with bipolar signal S with pdf fS(s) = pδ(s +
A) + (1 − p)δ(s − A) and location-scale noise N follows
from (102) as

C = μS − 2
∫ ∞

−∞
s[pδ(s + A) + (1 − p)δ(s − A)]

×FÑ

(
θ − s − μN

σN

)
ds (103)

= μS + 2pAFÑ

(
θ + A − μN

σN

)

− 2(1 − p)AFÑ

(
θ − A − μN

σN

)
. (104)

We first show that the local noise benefit ∂C
∂σN

> 0 holds if
and only if the following inequality holds:

(1 − p)(θ − A − μN )fÑ

(
θ − A − μN

σN

)

> p(θ + A − μN )fÑ

(
θ + A − μN

σN

)
. (105)

Suppose the cdf FÑ is absolutely continuous and thus
differentiable [39]: dFÑ (z)

dz
= fÑ (z). Then the partial derivative
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∂C
∂σN

has the form

∂C

∂σN

= −2pA

(
θ + A − μN

σ 2
N

)
fÑ

(
θ + A − μN

σN

)

+ 2(1 − p)A

(
θ − A − μN

σ 2
N

)
fÑ

(
θ − A − μN

σN

)
.

(106)

Then set ∂C
∂σN

> 0 and (106) becomes (105).
Inequality (105) requires checking the four cases that

correspond to whether θ − A − μN is positive or negative and
whether θ + A − μN is positive or negative.

Case 1. θ − A − μN < 0 and θ + A − μN < 0.
The conditions imply that μN > θ + A. Thus we have a

local noise benefit ∂C
∂σN

> 0 if and only if μN > θ + A and the
signal-noise-system parameters in Eq. (105) that satisfy

p

1 − p
>

(θ − A − μN )fÑ

(
θ−A−μN

σN

)
(θ + A − μN )fÑ

(
θ+A−μN

σN

) . (107)

Case 2. θ − A − μN > 0 and θ + A − μN > 0.
The conditions imply that μN < θ − A. Thus we have a

local noise benefit ∂C
∂σN

> 0 if and only if μN < θ − A and the
signal-noise-system parameters in Eq. (105) that satisfy

p

1 − p
<

(θ − A − μN )fÑ

(
θ−A−μN

σN

)
(θ + A − μN )fÑ

(
θ+A−μN

σN

) . (108)

Thus Cases 1 and 2 give sufficient conditions for a local
noise benefit (i) and (ii).

Case 3. θ − A − μN < 0 and θ + A − μN > 0.
The conditions imply that θ − A < μN < θ + A. The left-

hand side of (105) is negative while the right-hand side of (105)
is positive and thus (105) does not hold. So there is no noise
benefit.

The condition θ − A < μN < θ + A results in a negative
partial derivative ∂C

∂σN
:

∂C

∂σN

= −2pA

(
θ + A − μN

σ 2
N

)
fÑ

(
θ + A − μN

σN

)

+ 2(1 − p)A

(
θ − A − μN

σ 2
N

)
fÑ

(
θ − A − μN

σN

)
(109)

< 0. (110)

Thus θ − A < μN < θ + A is a necessary condition for a local
noise benefit.

Case 4. θ − A − μN > 0 and θ + A − μN < 0.
The conditions imply that μN < θ − A and μN > θ + A.

This case is logically impossible since A > 0. �
The proof also shows that the noise benefit is a local

maximum when equality replaces the inequalities in Eq. (94)
or in Eq. (108).

V. LOCAL NOISE BENEFITS FOR ARBITRARY SIGNAL
AND LOCATION-SCALE NOISE

We next consider the threshold system (1) when the
signal S has arbitrary pdf fS(s) and the noise N comes

from the location-scale family fN (n) = 1
σN

fÑ ( n−μN

σN
). Thus

the conditional pdf of Y given a signal value s is

fY |S(y|s) =
{

FÑ

(
θ−s−μN

σN

)
y = −1

1 − FÑ

(
θ−s−μN

σN

)
y = 1

, (111)

= FÑ

(
θ − s − μN

σN

)
δ(y + 1)

+
[

1 − FÑ

(
θ − s − μN

σN

)]
δ(y − 1), (112)

where FÑ is the cdf of the standardized random variable Ñ =
N−μN

σN
.

The input-output cross correlation measure C for the
threshold system with arbitrary signal pdf fS(s) and location-
scale noise with pdf fN (n) = 1

σN
fÑ ( n−μN

σN
) has the form (102)

C = μS − 2
∫ ∞

−∞
sfS(s)FÑ

(
θ − s − μN

σN

)
ds. (113)

Theorem 3 below states a necessary and sufficient condition
for a local noise benefit ∂C

∂σN
> 0 for an arbitrary signal S and

location-scale noise N .
Theorem 3. Suppose the input signal S has pdf fS(s). Sup-

pose the location-scale noise N has mean μN and variance σ 2
N

with pdf fN (n) = 1
σN

fÑ ( n−μN

σN
). Then the threshold system (1)

has the local noise benefit ∂C
∂σN

> 0 if and only if

r2
SN < (θ − μN )μSN, (114)

where

μSN =
∫ ∞

−∞
s

1

kSN

fS(s)fÑ

(
θ − s − μN

σN

)
ds, (115)

r2
SN =

∫ ∞

−∞
s2 1

kSN

fS(s)fÑ

(
θ − s − μN

σN

)
ds, (116)

and the normalizer kSN > 0 when the the product
fS(s)fÑ ( θ−s−μN

σN
) has nonzero support:

kSN =
∫ ∞

−∞
fS(s)fÑ

(
θ − s − μN

σN

)
ds. (117)

Proof. Suppose C is differentiable with respect to the noise
standard deviation σN . Then

∂C

∂σN

= −2
∫ ∞

−∞
sfS(s)

∂

∂σN

FÑ

(
θ − s − μN

σN

)
ds. (118)

The partial derivative ∂FÑ

∂σN
has the form

∂

∂σN

FÑ

(
θ − s − μN

σN

)

= ∂

∂σN

∫ θ−s−μN
σN

∞
fÑ (z)dz

= −θ − s − μN

σ 2
N

fÑ

(
θ − s − μN

σN

)
. (119)
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Then

∂C

∂σN

= 2
∫ ∞

−∞

s(θ − s − μN )

σ 2
N

fS(s)fÑ

(
θ − s − μN

σN

)
ds,

(120)

= 2
∫ ∞

−∞

s(θ − μN )

σ 2
N

fS(s)fÑ

(
θ − s − μN

σN

)
ds

− 2
∫ ∞

−∞

s2

σ 2
N

fS(s)fÑ

(
θ − s − μN

σN

)
ds. (121)

Consider the product fS(s)fÑ ( θ−s−μN )
σN

). Suppose the sup-
ports of both pdfs overlap. We can define fSN (θ ; s) =

1
kSN

fS(s)fÑ ( θ−s−μN

σN
) as a pdf, where kSN (θ ) > 0 is the normal-

izer such that
∫ ∞
−∞

1
kSN

fS(s)fÑ ( θ−s−μN

σN
)ds = 1. So the partial

derivative ∂C
∂σN

has the form

∂C

∂σN

= kSN

∫ ∞

−∞

s(θ − μN )

σ 2
N

1

kSN

fS(s)fÑ

(
θ − s − μN

σN

)
ds

− 2kSN

∫ ∞

−∞

s2

σ 2
N

1

kSN

fS(s)fÑ

(
θ − s − μN

σN

)
ds,

(122)

= 2kSN (θ − μN )

σ 2
N

∫ ∞

−∞
sfSN (θ ; s)ds

− 2kSN

σ 2
N

∫ ∞

−∞
s2fSN (θ ; s)ds, (123)

= 2(θ − μN ) kSN μSN

σ 2
N

− 2 kSN r2
SN

σ 2
N

(124)

= 2 kSN

(
(θ − μN )μSN − r2

SN

)
σ 2

N

. (125)

A local noise benefit occurs when ∂C
∂σN

> 0. This holds in (125)
if and only if

r2
SN < (θ − μN )μSN (126)

since kSN > 0 and σ 2
N > 0. �

The necessary and sufficient condition (114) characterizes
noise benefits in threshold systems with arbitrary input signals
and location-scale noise. But the first moment μSN and the
second moment r2

SN depend on θ − μN . So specific forms
of (114) require knowledge of μSN and r2

SN .

VI. FORBIDDEN INTERVAL THEOREM FOR GAUSSIAN
SIGNAL AND NOISE

Suppose the threshold system (1) has Gaussian input signal
S with pdf fS(s) = N (μS,σ

2
S ) and Gaussian noise N with pdf

fN (n) = N (μN,σ 2
N ). Then the input-output cross correlation

measure C (113) becomes

C = μS − 2
∫ ∞

−∞
sfS(s)�

(
θ − s − μN

σN

)
ds, (127)

where �(z) is the standard normal cdf.
Theorem 4 states a forbidden interval theorem for a local

noise benefit in a threshold system with Gaussian signal and
Gaussian noise.

Theorem 4. Suppose the signal S is Gaussian with mean μS

and variance σ 2
S : S ∼ N (μS,σ

2
S ) and the noise N is Gaussian

with mean μN and variance σ 2
N : N ∼ N (μN,σ 2

N ). Then the
threshold system (1) has a local noise benefit ∂C

∂σN
> 0 if and

only if μN /∈ (θ − a2,θ − a1), where

a1 = −1

2
μS

(
σ 2

N

σ 2
S

− 1

)

− 1

2

√
μ2

S

(
σ 2

N

)2 + 4

(
σ 2

S + σ 2
N + μS

σ 2
N

σ 2
S

)
, (128)

a2 = −1

2
μS

(
σ 2

N

σ 2
S

− 1

)

+ 1

2

√
μ2

S

(
σ 2

N

)2 + 4

(
σ 2

S + σ 2
N + μS

σ 2
N

σ 2
S

)
. (129)

Proof. There is a local noise benefit if and only if ∂C
∂σN

> 0.
The partial derivative (125) is

∂C

∂σN

= 2 kSN

(
(θ − μN )μSN − r2

SN

)
σ 2

N

, (130)

where the first moment μSN and second moment r2
SN for

Gaussian signal and noise are (similar to the parameters of
the posterior density in Bayes theorem) [40]

μSN = μSσ
2
N + (θ − μN )σ 2

S

σ 2
S + σ 2

N

, (131)

σ 2
SN = σ 2

S σ 2
N

σ 2
S + σ 2

N

, (132)

and

r2
SN = σ 2

SN + μ2
SN . (133)

The normalizer is

kSN = σSN√
2πσS

e
− 1

2

(
μ2

S
σ2
N

+(θ−μN )2σ2
S

σ2
S

σ2
N

− μSσ2
N

+(θ−μN )σ2
S

σ2
S

σ2
N

(σ2
S

+σ2
N

)

)
. (134)

Substitute (131)–(133) into (114) to obtain

σ 2
S σ 2

N

σ 2
S + σ 2

N

+
(
μSσ

2
N + (θ − μN )σ 2

S

)2(
σ 2

S + σ 2
N

)2

< (θ − μN )
μSσ

2
N + (θ − μN )σ 2

S

σ 2
S + σ 2

N

. (135)

This holds if and only if

σ 2
S σ 2

N

(
σ 2

S + σ 2
N

) + μ2
Sσ

4
N + 2(θ − μN )μSσ

2
S σ 2

N

+ (θ − μN )2σ 4
S < (θ − μN )μS

(
σ 2

S σ 2
N + σ 4

N

)
+ (θ − μN )2σ 4

S + (θ − μN )2μSσ
2
N . (136)

This holds in turn if and only if

(θ − μN )2 + μS

(
σ 2

N

σ 2
S

− 1

)
(θ − μN )

−
(

σ 2
S + σ 2

N + μ2
Sσ

4
S

σ 4
S

)
> 0. (137)
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FIG. 3. (Color online) Forbidden-interval noise benefit in an array of threshold detectors (1) that uses the baboon image as its input.
(a) Histogram of the gray-scale baboon image. We scale the pixel values to lie in the interval [−1,1] and use these values as input signals to
the array of threshold detectors. [(b) and (c)] Forbidden intervals (bands) using the Gaussian approximation of Theorem 5 for θ = −0.8 and
θ = 0. Each interval depends on the signal and noise statistics. Solid lines are intervals from the statistics of the baboon image with uniform
noise. Dashed lines are estimated intervals using Gaussian approximation of both signal and noise. [(d)–(g)] Quantized (thresholded) baboon
images when the detectors have threshold θ = −0.8. The noise N is uniform with zero mean. Thus μN /∈ (θ − a2,θ − a1) and this gives an SR
noise benefit. [(h)–(k)] The detectors have threshold θ = 0 and the noise N is uniform with zero mean. Thus μN ∈ (θ − a2,θ − a1) and there
is no noise benefit. (l) Cross correlation C when θ = −0.8: This gives an SR noise benefit. (m) Cross correlation C when θ = 0: There is no
noise benefit.
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But (137) is quadratic in (θ − μN ). So we can replace the
inequality in Eq. (137) with an equality and find its roots from
the quadratic formula:

θ − μN = −1

2
μS

(
σ 2

N

σ 2
S

− 1

)

± 1

2

√
μ2

S

(
σ 2

N

σ 2
S

− 1

)2

+ 4

(
σ 2

S + σ 2
N + μ2

Sσ
4
S

σ 4
S

)

(138)

= a1
(
μS,σ

2
S ,σ 2

N

)
,a2

(
μS,σ

2
S ,σ 2

N

)
, (139)

where the roots a1 and a2 depend on μS , σ 2
S , and σ 2

N

and a1(μS,σ
2
S ,σ 2

N ) < 0 < a2(μS,σ
2
S ,σ 2

N ). Then a local noise

benefit ∂C
∂σN

> 0 holds if and only if(
θ − μN − a1

(
μS,σ

2
S ,σ 2

N

))(
θ − μN − a2

(
μS,σ

2
S ,σ 2

N

))
> 0.

(140)

This is equivalent to

μN < θ − a2
(
μS,σ

2
S ,σ 2

N

)
(141)

or

μN > θ − a1
(
μS,σ

2
S ,σ 2

N

)
. (142)

�
Note that the correlation-based forbidden interval changes

as the noise variance σ 2
N changes for the given signal’s mean

μS and variance σ 2
S . This also applies to forbidden intervals

for all signal and noise pdfs.
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FIG. 4. (Color online) Cross correlations C in (a) and (b) and derivatives ∂C

∂σ
in (c) and (d) of an array of threshold detectors for the baboon

image with uniform noise. The forbidden intervals (bands) for noise benefits in an array of threshold detectors (1) in Figure 2 derive from the
contours of ∂C

∂σ
= 0.
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VII. NOISE BENEFITS FOR ARRAYS
OF THRESHOLD DETECTORS

This section derives correlation-based noise benefits for
an array of Q threshold detectors. The independent and
identically distributed input sequence Si has arbitrary pdf with
finite mean and variance and the independent and identically
distributed noise Ni has location-scale pdf with finite mean
and variance. The input signal Si and noise Ni are independent.
Each threshold detector has the input-output relationship

Yi = sgn(Si + Ni − θi) (143)

for i = 1, . . . ,Q. This resembles the case when we collect
Q samples of output signals of a threshold detector (1) from
the input signal sequence Si . But the structure of the array
of threshold detectors here differs from the parallel summing
array of noisy threshold elements in Ref. [31] and the array of
signal quantizers used for maximum-likelihood detection and
Neyman-Pearson detection in Ref. [14]. Those systems use an
array of threshold detectors to process a signal sample S with
independent additive noise Ni and then sum the results as an
output Y .

Figure 3 shows examples of noise benefits for the array
of thresholds on the 512 × 512 baboon image with uniform
noise. The histogram of the baboon image approximates the
pdf fS(s) of the input signal. We obtain the first and second
moments μSN and r2

SN from the histogram and the noise pdf.
Then we solve (148) to obtain the forbidden bands in Figs. 3(b)
and 3(c). Figures 3(b) and 3(c) show how well the Gaussian
approximation applies to the baboon images with uniform
noise. Figure 4 shows the regions where the conditions in
Theorem 3 hold.

We use the sample cross-correlation measure Ĉ of two
Q-dimensional random vectors S = [S1 · · · SQ]t and Y =
[Y1 · · · YQ]t as a performance measure of the array:

Ĉ = 1

Q

Q∑
i=1

SiYi. (144)

Thus Ĉ is random with mean

μĈ = E[Ĉ] = C, (145)

= μS − 2
∫ ∞

−∞
sfS(s)FÑ

(
θ − s − μN

σN

)
ds, (146)

and variance

σ 2
Ĉ

= 1

Q

[
σ 2

S + 4μS

∫ ∞

−∞
sfS(s)FÑ

(
θ − s − μN

σN

)
ds

− 4

( ∫ ∞

−∞
sfS(s)FÑ

(
θ − s − μN

σN

)
ds

)2]
. (147)

So we have on average a local noise benefit if ∂μĈ

∂σN
= ∂C

∂σN
> 0.

Thus the condition for an average local noise benefit for the
sample cross correlation Ĉ has the same form as the condition
in Theorem 3. We state this condition as Theorem 5.

Theorem 5. Suppose the signal S has arbitrary pdf with finite
mean μS and finite variance σ 2

S . Suppose the noise N also has
an arbitrary pdf with finite mean μN and finite variance σ 2

N .
Then the Q array of threshold systems (1) has an average local
noise benefit ∂μĈ

∂σN
> 0 if and only if

r2
SN < (θ − μN )μSN, (148)

where μSN and r2
SN have the same form as in Eqs. (115)

and (116).

VIII. CONCLUSION

We have found necessary and sufficient conditions for five
correlation forbidden interval theorems. All theorems find
a correlation-based noise benefit for one of three types of
forbidden interval: (θ − A,θ + A) with bipolar input signals,
r2
SN < (θ − μN )μSN with arbitrary signal and location-scale

noise, or (θ − a2(μS,σ
2
S ,σ 2

N ),θ − a1(μS,σ
2
S ,σ 2

N )) with a
Gaussian input signal and Gaussian noise for the stochastic
threshold signal detector in Eq. (1). Earlier FITs applied
only to two-valued signals and not to continuous signals.
Correlation noise benefits may hold for other combinations of
random signals and noise. Adaptive algorithms should help
find the optimal noise level in all such cases.
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